SOIL AND GROUNDWATER MANAGEMENT PLAN

Revised July 12, 2019
Eversource Seacoast Reliability Project
Gundalow Landing Newington to Portsmouth Substation Portsmouth, New Hampshire

Table of Contents

١.	Intro	oductio	on	2
2.	Bac	kgrour	nd and Regulatory History	3
	2.1	NHD	ES Emergency Rule for PFCs	3
	2.2	Regul	latory Changes	3
3.	Prec	onstru	ction Requirements	4
1.	Wor	k Area	a Perimeter Monitoring for PFCs	4
	4.1	Soil		4
	4.2	Water	r	5
5.	Soil	Mana	gement	5
	5.1	Soil E	Excavation	5
	5.1.	1 I	Dust Control	5
	5.1.2	2 1	Materials Management Areas	6
	5.2	Soil C	Classification	6
	5.2.	1 (On-Site Reuse	6
5.	Dew	aterin	g	7
Αt	tachme	Table	1 – Derivation of Soil Screening Levels for PFCs e 1 – Site Location Map	
Аŗ	pendi	κA	Darius Frink Farm Soil and Water Investigation Report and Soil and Water Management Plan- Updated 12/15/2017	
Аŗ	pendi	кВ	Pease Area of Special Notice Documents	
Αŗ	pendi	к С	Contractor Means & Methods Summary	
Αŗ	pendix	к С-1	Soil and groundwater management plan for construction of structures from the Crossings Mall in Newington east to the Portsmouth Substation – May 3, 2019 approved by NHDES on May 6, 2019	1
Αŗ	pendix	x C-2	Construction Dewatering Plan Details for Dewatering at Three Locations Requiring an EPA NPDES Dewatering or Remediation General Permit for Discharge to Surface Water Bodies	r
4ŗ	pendi	x C-3	Excavation and Stockpile Management Plan	
Αŗ	pendix	x C-4	Supplemental Information - Soil and Groundwater Management at the Frink Farm property	

1. Introduction

This document presents the requirements and procedures to be undertaken by Eversource personnel or hired contractors that excavate soil or manage soil or groundwater during installation of a new electric transmission line from Gundalow Landing in Newington to the Portsmouth Substation in Portsmouth, New Hampshire (the Project Area; Fig. 1). The new 115 kV transmission line is being installed as part of Eversource's Seacoast Reliability Project (SRP). The SRP will be installed in an existing distribution right-of-way corridor. The Project Area subject to this plan is approximately 4.25 miles long and begins at Gundalow Landing adjacent to Little Bay in the west and terminates at the Portsmouth Substation in the east (Fig. 1).

This plan was prepared pursuant to New Hampshire Department of Environmental Services (NHDES) Wetlands Permit Condition 38 in the New Hampshire Site Evaluation Committee (SEC) Order and Certificate of Site and Facility Conditions issued on January 31, 2019 (SEC Docket No. 2015-04) which states:

At least ninety (90) days prior to conducting dewatering activities in the vicinity of the Pease International Tradeport [i.e., the former Pease Air Force Base (Pease)] and the Daruis Frink Farm property in Newington, the Applicant shall consult with the Pease Development Authority, NH DES Waste Management Division, and US Environmental Protection Agency to determine if groundwater has been contaminated by perfluorinated compounds (e.g., PFOA, PFOS) to levels which would require special treatment. Should special treatment be necessary, the Applicant shall submit a plan to the NH DES Waste Management Division for approval and then implement the approved plan.

A site specific *Updated Soil and Water Investigation and Management Plan*, dated December 15, 2017, has been developed for the Darius Frink Farm property in Newington and is included in Appendix A. This plan is referenced in a Memorandum of Understanding (MOU) between Eversource and the Rockingham County Conservation District (RCCD) dated January 24, 2018.

This final version of the Soil and Groundwater Management Plan incorporates information requested by NHDES at plan review meetings on May 15, 2019 and July 10, 2019 and updates the previous plan dated June 12, 2019 with the means and methods proposed by Eversource's contractor(s) selected to implement the work in accordance with the requirements of this Soil and Groundwater and Management Plan, which are included in Appendix C. Information presented includes:

- Appendix C-1: Soil and Groundwater Management Plan for Construction of Structures from the Crossings Mall in Newington East to the Portsmouth Substation – May 3, 2019 Approved by NHDES on May 6, 2019
- Appendix C-2: Construction Dewatering Plan Details for Dewatering at Three Locations Requiring an EPA NPDES Dewatering or Remediation General Permit for Discharge to Surface Water Bodies Construction Dewatering Plan
- Appendix C-3: Excavation and Stockpile Management Plan
- Appendix C-4: Supplemental Information Soil and Groundwater Management at the Frink Farm property

1. Introduction

This document presents the requirements and procedures to be undertaken by Eversource personnel or hired contractors that excavate soil or manage soil or groundwater during installation of a new electric transmission line from Gundalow Landing in Newington to the Portsmouth Substation in Portsmouth, New Hampshire (the Project Area; Fig. 1). The new 115 kV transmission line is being installed as part of Eversource's Seacoast Reliability Project (SRP). The SRP will be installed in an existing distribution right-of-way corridor. The Project Area subject to this plan is approximately 4.25 miles long and begins at Gundalow Landing adjacent to Little Bay in the west and terminates at the Portsmouth Substation in the east (Fig. 1).

This plan was prepared pursuant to New Hampshire Department of Environmental Services (NHDES) Wetlands Permit Condition 38 in the New Hampshire Site Evaluation Committee (SEC) Order and Certificate of Site and Facility Conditions issued on January 31, 2019 (SEC Docket No. 2015-04) which states:

At least ninety (90) days prior to conducting dewatering activities in the vicinity of the Pease International Tradeport [i.e., the former Pease Air Force Base (Pease)] and the Daruis Frink Farm property in Newington, the Applicant shall consult with the Pease Development Authority, NH DES Waste Management Division, and US Environmental Protection Agency to determine if groundwater has been contaminated by perfluorinated compounds (e.g., PFOA, PFOS) to levels which would require special treatment. Should special treatment be necessary, the Applicant shall submit a plan to the NH DES Waste Management Division for approval and then implement the approved plan.

A site specific *Updated Soil and Water Investigation and Management Plan*, dated December 15, 2017, has been developed for the Darius Frink Farm property in Newington and is included in Appendix A. This plan is referenced in a Memorandum of Understanding (MOU) between Eversource and the Rockingham County Conservation District (RCCD) dated January 24, 2018.

This final version of the Soil and Groundwater Management Plan incorporates information requested by NHDES at plan review meetings on May 15, 2019 and July 10, 2019 and updates the previous plan dated June 12, 2019 with the means and methods proposed by Eversource's contractor(s) selected to implement the work in accordance with the requirements of this Soil and Groundwater and Management Plan, which are included in Appendix C. Information presented includes:

- Appendix C-1: Soil and Groundwater Management Plan for Construction of Structures from the Crossings Mall in Newington East to the Portsmouth Substation – May 3, 2019 Approved by NHDES on May 6, 2019
- Appendix C-2: Construction Dewatering Plan Details for Dewatering at Three Locations Requiring an EPA NPDES Dewatering or Remediation General Permit for Discharge to Surface Water Bodies Construction Dewatering Plan
- Appendix C-3: Excavation and Stockpile Management Plan
- Appendix C-4: Supplemental Information Soil and Groundwater Management at the Frink Farm property

1. Introduction

This document presents the requirements and procedures to be undertaken by Eversource personnel or hired contractors that excavate soil or manage soil or groundwater during installation of a new electric transmission line from Gundalow Landing in Newington to the Portsmouth Substation in Portsmouth, New Hampshire (the Project Area; Fig. 1). The new 115 kV transmission line is being installed as part of Eversource's Seacoast Reliability Project (SRP). The SRP will be installed in an existing distribution right-of-way corridor. The Project Area subject to this plan is approximately 4.25 miles long and begins at Gundalow Landing adjacent to Little Bay in the west and terminates at the Portsmouth Substation in the east (Fig. 1).

This plan was prepared pursuant to New Hampshire Department of Environmental Services (NHDES) Wetlands Permit Condition 38 in the New Hampshire Site Evaluation Committee (SEC) Order and Certificate of Site and Facility Conditions issued on January 31, 2019 (SEC Docket No. 2015-04) which states:

At least ninety (90) days prior to conducting dewatering activities in the vicinity of the Pease International Tradeport [i.e., the former Pease Air Force Base (Pease)] and the Daruis Frink Farm property in Newington, the Applicant shall consult with the Pease Development Authority, NH DES Waste Management Division, and US Environmental Protection Agency to determine if groundwater has been contaminated by perfluorinated compounds (e.g., PFOA, PFOS) to levels which would require special treatment. Should special treatment be necessary, the Applicant shall submit a plan to the NH DES Waste Management Division for approval and then implement the approved plan.

A site specific *Updated Soil and Water Investigation and Management Plan*, dated December 15, 2017, has been developed for the Darius Frink Farm property in Newington and is included in Appendix A. This plan is referenced in a Memorandum of Understanding (MOU) between Eversource and the Rockingham County Conservation District (RCCD) dated January 24, 2018.

This final version of the Soil and Groundwater Management Plan incorporates information requested by NHDES at plan review meetings on May 15, 2019 and July 10, 2019 and updates the previous plan dated June 12, 2019 with the means and methods proposed by Eversource's contractor(s) selected to implement the work in accordance with the requirements of this Soil and Groundwater and Management Plan, which are included in Appendix C. Information presented includes:

- Appendix C-1: Soil and Groundwater Management Plan for Construction of Structures from the Crossings Mall in Newington East to the Portsmouth Substation – May 3, 2019 Approved by NHDES on May 6, 2019
- Appendix C-2: Construction Dewatering Plan Details for Dewatering at Three Locations Requiring an EPA NPDES Dewatering or Remediation General Permit for Discharge to Surface Water Bodies Construction Dewatering Plan
- Appendix C-3: Excavation and Stockpile Management Plan
- Appendix C-4: Supplemental Information Soil and Groundwater Management at the Frink Farm property

Soil and Groundwater Management Plan -3-Eversource Seacoast Reliability Project Gundalow Landing Newington to Portsmouth Substation Portsmouth, New Hampshire

2. Background and Regulatory History

The SRP alignment in Newington begins at Gundalow Landing and proceeds northeast for approximately 1.8 miles where it then turns southeasterly and continues along the Spaulding Turnpike for approximately 1.5 miles. The SRP then proceeds east over the Spaulding Turnpike and continues for 1 mile, terminating at the Portsmouth Substation. The project route is in proximity to the northern and eastern boundaries of the former Pease Air Force Base. Several historical releases are being managed at Pease including releases of jet fuel and other petroleum constituents, chlorinated solvents, and perfluorinated compounds (PFCs).

On behalf of Eversource, GEI Consultants, Inc. (GEI) filed an Area of Special Notice (ASN) request with the Pease Development Authority in May 2017 and was forwarded a letter from the United States Air Force (USAF) in August 2017, included in Appendix B. The letter documented that the project was located within (or in proximity to) two delineated Groundwater Management Zones associated with the former Pease Air Force Base as well as in areas known to have PFCs in groundwater. Specifically, the eastern boundaries of the GMZs associated with the historical chlorinated solvent release at Landfill Site 5 and Bulk Fuel Storage Area Site 13 are transected by the project as shown on the Institutional Controls Map included in Appendix B. In October of 2017, Scott Hilton of the New Hampshire Department of Environmental Services (NHDES) Waste Management Division, informed Eversource and GEI that the delineation of the GMZ for PFCs associated with Pease Site 8 is ongoing and that it is likely that the project route currently transects portions of the eventual GMZ. However, the timeline for establishment of the new GMZ was not available. Therefore, Eversource has conservatively assumed that soil and groundwater between Gundalow Landing and the Spaulding Turnpike may be impacted by PFCs. Eversource will maintain this assumption until data is collected that demonstrates that PFC contamination is not present or less than applicable standards.

In May 2019, GEI submitted a second ASN request with the USAF and Pease Development Authority to request any additional information that may have been generated since the May 2017 ASN request. USAF has provided Eversource a draft version of mapping with updated groundwater and surface water sampling data

Proper procedures, including best management practices, for on-site management and off-site disposal of soil and groundwater are necessary to reduce the potential for exposure to oil and hazardous materials (OHM) and be protective of workers, the public, and environment. The objectives of this Soil and Groundwater Management Plan are to:

- Ensure that soil and groundwater is managed appropriately on-site or disposed of appropriately off site if necessary; and
- Specify procedures to limit exposures to contaminated soil or groundwater via dermal contact, inhalation, and/or ingestion.

2.1 NHDES Emergency Rule for PFCs

In May 2016, NHDES enacted Emergency Rule 05-31-16 under Env-Or-600 which includes the addition of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to the New Hampshire state ambient groundwater quality standards (AGQS). The AGQS for PFOA, PFOS, and the combined concentration of PFOA and PFOS was set at 0.07 μ g/L. Env-Or-600 does not currently include soil standards or regulations for PFOA or PFOS.

2.2 Regulatory Changes

NHDES filed a final rulemaking proposal to the New Hampshire Joint Legislative Committee on Administrative Rules (JLCAR) on June 28, 2019 to establish Maximum Contaminant Level

Soil and Groundwater Management Plan -4-Eversource Seacoast Reliability Project Gundalow Landing Newington to Portsmouth Substation Portsmouth, New Hampshire

(MCLs)/drinking water standards and AGQS for four per- and polyfluoroalkyl substances, PFOA, PFOS, perfluoronoanooic acid (PFNA) and perfluorohexanesulfonic acid (PFHxS) on June 28, 2019. If approved by JLCAR the new rules are scheduled to become effective on October 1, 2019. The final proposed MCL and AGQS concentrations are: PFOA 0.012 μ g/L; PFOS 0.015 μ g/L; PFHxS 0.018 μ g/L, PFNA 0.011 μ g/L.

Eversource has conservatively assumed that soil and groundwater between Gundalow Landing and the Portsmouth Substation may be impacted by PFCs and will require the Contractors to manage soil and groundwater accordingly.

3. Preconstruction Requirements

The following must be completed before subsurface work commences, and approved by Eversource:

- **Notify Eversource Personnel:** The Eversource Project Manager shall be notified at least 10 business days prior to performing planned (non-emergency) soil excavation or other subsurface work that will require management of soil or groundwater. Also, Eversource shall be notified immediately (within one hour) if unanticipated conditions are encountered such as buried debris including drums, tanks or other containers.
- Health and Safety Plan (HASP): The contractor selected to perform the work in the Project Area is expected to prepare a HASP for its workers and the public to address the anticipated contaminants of concern, specifically PFOA, PFOS, and arsenic as well as potential contaminants including petroleum compounds or chlorinated compounds. The HASP shall include historical site characterization data. The HASP shall be prepared by a Certified Industrial Hygienist or other qualified individual appropriately trained in worker health and safety procedures and requirements. The contractor is solely responsible for conducting the work in a manner that is protective of workers and the public. Employees that will be handling contaminated or potentially contaminated soil or water are required to have OSHA HAZWOPER 24 or 40-hour training in accordance with standard 1910.120(e).
- **Regulatory Review and Submittals:** A review of other federal, state, or local regulatory requirements (e.g., National Pollutant Discharge Elimination System permits) shall be conducted before work commences depending on the location and type of planned activity.

4. Work Area Perimeter Monitoring for PFCs

General screening levels for PFOA and PFOS in soil and groundwater are not available. Based on information from the United States Environmental Protection Agency (USEPA) and New Hampshire Environmental Health Program (EHP), GEI derived the following suggested construction worker PFC screening levels for the project, where applicable. The selected contractor may use these screening levels to develop their Health and Safety Plan (HASP) and Job Hazard Analysis (JHA), as appropriate.

4.1 Soil

GEI derived a human health risk-based screening level (SL) for a construction worker exposure to PFOA and PFOS in soil based on the EHP and NHDES methodology applied to derive a Direct Contact Risk-Based (DCRB) soil concentration for PFOA and PFOS in soil. Exposure assumptions used to derive these soil SLs were similar to NHDES Soil Category S-3 exposures considered protective of adult exposures to soil during short but intense exposures, such as during excavation work. These risk-based soil SLs account for exposure to impacted soil as a result of incidental ingestion and dermal contact during excavation work. Table 1 presents the soil SL derived for both PFOA and PFOS of 0.5 mg/kg.

Soil and Groundwater Management Plan -5-Eversource Seacoast Reliability Project Gundalow Landing Newington to Portsmouth Substation Portsmouth, New Hampshire

The adult construction worker was assumed to be exposed to outdoor soil a total of 250 days a year. This assumption was based on an excavation worker exposed to soil 5 days per week for a 1-year excavation project (350 days) assuming a worker takes 2 weeks of vacation in a year. Based on NHDES guidance, the adult excavation worker was assumed to ingest 480 mg of soil per day of intense excavation work. Also based on NHDES guidance, a soil adherence factor equal to 0.2 mg/cm² was assumed and an exposed skin surface area of 3,104 cm² was assumed, which includes hands, forearms, face and neck. Additional exposure parameters based on NHDES guidance are presented in Table 1. USEPA applies different exposure assumptions for the construction worker exposure scenario in the derivation of Regional Screening Levels (RSLs) for soil. Based on USEPA exposure assumptions for the construction worker, which are noted in Table 1, a slightly higher Construction Worker Soil Screening Level for PFOA and PFOS of 0.7 mg/kg could be derived.

The USEPA derived a Reference Dose (RfD) to evaluate non-cancer effects for PFOA and PFOS of 2 x 10 mg/kg-day, based on developmental effects. USEPA also derived a Cancer Slope Factor (CSF) for PFOA of 0.07 (mg/kg-day)-1; however, according to USEPA, the non-cancer developmental endpoint for PFOA represented by the RfD is protective of the cancer endpoint. In addition, because the critical effect identified for PFOA and PFOS is a developmental endpoint and can potentially result from a short-term exposure during a critical period of development, USEPA concludes that the chronic RfD is applicable to both short-term and chronic risk assessment scenarios. Therefore, it is appropriate to use the chronic RfD derived for both PFOA and PFOS to estimate short-term or subchronic risk-based SLs for a construction worker. As a result, it is GEI's opinion that a conservative SL for construction workers of 0.5 mg/kg be used for both PFOA and PFOS as stated above and shown in Table 1.

4.2 Water

USEPA derived a drinking water Health Advisory (HA) and NHDES derived the AGQS for PFOA and PFOS of $0.07~\mu g/L$. This HA is considered protective of lifetime exposures to PFOA and PFOS from residential ingestion of drinking water. This HA does not consider potential exposure to PFOA and PFOS as a result of dermal exposure or inhalation exposure. However, USEPA notes that neither PFOA nor PFOS are volatile and are therefore not expected to be present in air except if bound to particulate matter. According to USEPA's Health Effects Support Document for PFOA (May 2016), there is evidence that PFOA is absorbed following dermal exposure. The EPA document presents a permeability coefficient for PFOA of $9.49~x~10^{-7}$ cm/hour for human skin. USEPA risk based equations for deriving RSLs (May 2016) for dermal exposure to water were used to derive the Construction Worker Groundwater Screening Level for PFOA and PFOS of $1,000~\mu g/Liter$.

5. Soil Management

5.1 Soil Excavation

Excavated material shall be handled in general accordance with *The New Hampshire Code of Administrative Rules, Chapter Env-Or 600 - Contaminated Site Management* (Env-Or-600) and all other applicable federal, state, and local laws, regulations, and bylaws. Specifically, the following methods will be used during excavation, temporary stockpiling, and transportation to centralized stockpile locations offsite, and off-site disposal:

5.1.1 Dust Control

As needed, the contractor shall employ control measures to minimize airborne particulates during excavation or soil management (e.g. water sprays, mists, etc.). Water used for dust control shall be

Soil and Groundwater Management Plan -6-Eversource Seacoast Reliability Project Gundalow Landing Newington to Portsmouth Substation Portsmouth, New Hampshire

managed to avoid accumulation of water on the ground surface or within temporary stockpiles. A summary of the contractor's means and methods for complying with dust control requirements is in Appendix C.

5.1.2 Materials Management Areas

Excavated materials may be placed in temporary stockpiles adjacent to excavation areas and reused for backfill as appropriate. Excess excavated material will be transported to a centralized, off-site, materials management area approved by Eversource. Excess wet or saturated soils will be loaded into a slurry-tight, roll-off or dump truck and transported to the central materials management area. The Materials Management Areas shall be approved by Eversource and managed in in accordance with NHDES Env-Or 611.05(b).

Excavated soils shall be placed on 20-mil polyethylene sheeting and covered with properly secured, 6-mil (minimum) polyethylene sheeting at the end of each work day (or more frequently if rain or wind events present the potential for stockpile erosion, dust blow off, or odor migration). Stockpile sheeting shall be ultraviolet resistant, cold crack resistant to -40 degrees Fahrenheit, and free of holes and foreign matter. Stockpiles shall not contain free liquids. If necessary, erosion control will be installed around stockpiles that will be left overnight or generated during precipitation events.

A summary of the contractor's means and methods for complying with materials management requirements is in Appendix C-3.

5.2 Soil Classification

5.2.1 On-Site Reuse

Excavated material from above the observed groundwater interface should be backfilled within excavations to the extent feasible if the visual/olfactory, chemical, or geotechnical properties of the excavated soil are suitable for reuse.

As soil is excavated, the contractor's Professional Engineer (PE) or Professional Geologist (PG) shall observe and field screen the material for visual or olfactory indications of contamination. If visual or olfactory evidence of contamination is observed, soil will be screened for the presence of VOCs with a photoionization detector (PID) using the jar-headspace method. A minimum of one sample should be screened for visual or olfactory evidence of contamination per foundation element or open length of trench. Soils shall be screened more frequently if visual or olfactory indications of contamination are observed. Soil shall be segregated, if necessary, based on results of field screening and stockpiled for disposal characterization and off-site disposal.

Soil excavated from the saturated zone along the project alignment between Gundalow Landing and the Portsmouth Substation may only be reused as backfill in the saturated zone. Any uncharacterized excess soil from the saturated zone will be stockpiled and characterized for off-site disposal.

Excess soils shall be stockpiled at one or more designated materials management areas to be approved by Eversource as discussed in Section 5.1. The PE or PG will sample and test soil based on the acceptance criteria of the approved and licensed receiving facility. All soils will be sampled for PFCs.

Excess excavated material shall be loaded and transported to an appropriate off-site reuse, recycling or disposal location approved by Eversource. Person(s) transporting the excavated materials shall be licensed and permitted to transport such material in state(s) having jurisdiction. Trailers, dump bodies, or roll-offs used for transport shall have covers to prevent dust blow-off when necessary. The Contractor may also use polyethylene liners for transport of materials classified as a hazardous waste if encountered.

July 12, 2019

The contractor shall prepare disposal documentation and shall provide Eversource with material tracking and disposal records and certifications. Project documentation shall be maintained, including accurate records of material tracking, disposal transportation manifests (e.g., Straight BOL), and if necessary, additional environmental testing required by the receiving location.

6. Dewatering

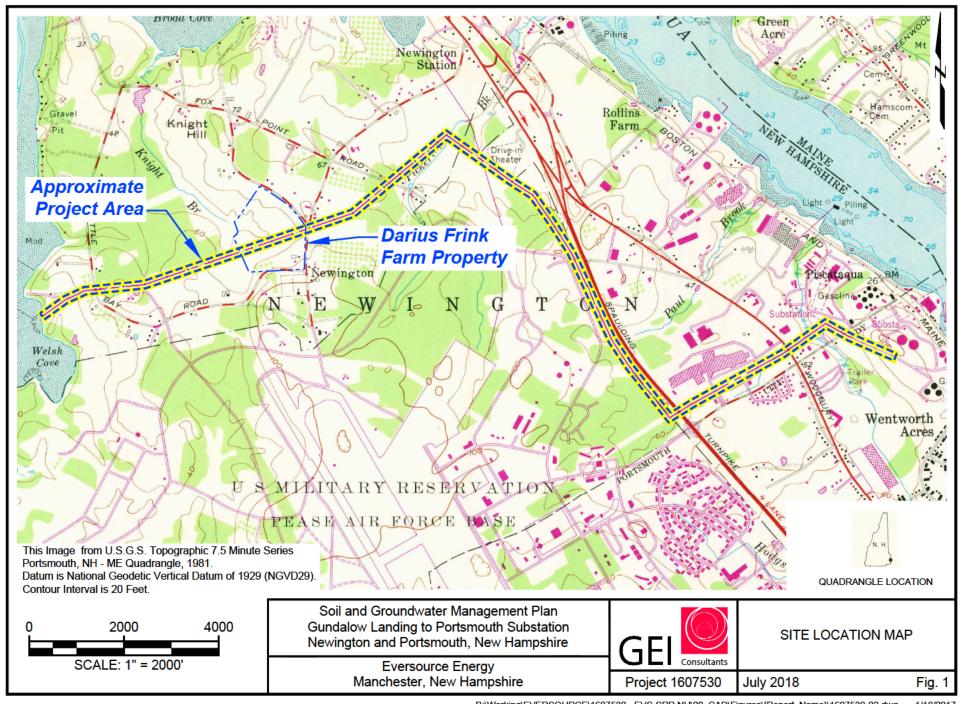
Given the proximity of the project area to Pease and given that the boundaries of the pending GMZ for PFCs from Pease Site 8 have not yet been defined, all groundwater recovered from the alignment subject to this plan will be managed by either of the management options listed below:

- On-Site Surface Water Discharge: On-site surface water discharge requires use of a water treatment system, which may include equipment such as fractionation (frac) tanks and carbon units, to adequately treat groundwater before discharge. It may be possible to discharge dewatering effluent into storm drains or surface water bodies under a NPDES Dewatering General Permit (DGP) with minimal treatment. Additional water testing for NPDES DGP requirements and approval from NHDES, and treatment for, at a minimum, total suspended solids (TSS) would be necessary. If, based on NHDES requirements or NPDES DGP testing results, a NPDES DGP is not appropriate, a NPDES Remediation General Permit (RGP) would likely be required to discharge dewatering effluent. Additional water treatment requirements would also likely apply.
- Off-Site Disposal: The contractor shall identify an appropriate off-site groundwater disposal method and licensed receiving facility(s). In addition to sampling requirements required by receiving facilities, all groundwater shall be sampled for PFCs and this data shall be provided to the receiving facility. Dewatering effluent may be pumped into a tanker truck or other appropriate containers and transported off-site to the selected facility. All receiving facilities must be preapproved by Eversource. No excess effluent may be recharged or disposed of at an uncontrolled location.

A summary of the contractor's means and methods for complying with dewatering requirements and NPDES dewatering information is included in Appendix C-2.

Table 1. Derivation of Soil Screening Levels for PFCs Eversource NH Seacoast Reliability Project Newington, New Hampshire

Development of NHDES Direct Contact Risk-Based Concentration (DCRB) for PFOA and PFOS in Soil


Soil Category	S-3	
Sensitive Receptor	Adult Construction/Excavation Worker	
RSCF	0.2	NHDES = Relative Source Contribution Factor
RfD (mg/kg-day)	2.00E-05	USEPA, 2016
CF (mg/kg)	1.00E+06	conversion factor
IR (mg/day)	480	MADEP uses 100 mg/day and USEPA uses 330 mg/day for CW
RAFo	1	NHDES
RAFd	0.1	NHDES
SA (cm2)	3,104	NHDES; USEPA uses 3,527 cm2 for CW
AF (mg/cm2)	0.2	NHDES; USEPA uses 0.3 mg/cm2 for CW
EF (days per year)	250	12 month project (5 days/week for 350 days in a year)
ED (years)	1	professional judgement
AT (days)	250	averaging period for a subchronic exposure is the subchronic period
BW (kg)	70	NHDES; USEPA uses 80 kg
3 DCRB Soil Concentration (mg/kg)=	0.5	

Concentration in Soil (mg/kg) = $\frac{RSCF * RfD * CF}{[(IR * RAFo) + (SA * AF * RAFd)] * [(EF * ED)/(AT * BW)]}$

Notes:

1. NHDES Soil S-1 = 0.5 mg/kg for PFOA and PFOS

2. NHDES Soil S-2 = 4.3 mg/kg for PFOA and PFOS

Appendix A

Darius Frink Farm Soil and Water Investigation Report and Soil and Water Management Plan – Updated 12/15/2017

Consulting
Engineers and
Scientists

December 15, 2017 Project 1607530

VIA EMAIL: Kurt.Nelson@eversource.com

Mr. Kurt I. Nelson Eversource Energy 13 Legends Way Hookset, NH 03106

Dear Mr. Nelson:

Re: Updated Soil and Water Investigation and Management Plan Darius Frink Farm Newington, New Hampshire

GEI Consultants, Inc. (GEI) prepared this letter report to summarize the results of our soil, groundwater, and surface water investigations and to provide recommendations for soil and water management to support Eversource Energy's installation of a new electric transmission line at Darius Frink Farm in Newington, New Hampshire (the Property; Fig. 1). The new transmission line is being installed as part of Eversource Energy's Seacoast Reliability Project (SRP).

The Property consists primarily of farm land and wetlands. Eversource has a Right of Way (ROW) through the Property that is currently used for an above-ground electric distribution line. The current design of the SRP consists of the construction of a new 115 kilovolt (kV) underground transmission line through the Property. These investigations were conducted to develop appropriate soil, groundwater, and surface water management practices to support the construction on the Property.

The Property is located within the downgradient contaminant plume of Site 8 located at Pease Air Force Base (Pease; Fig. 1). Therefore, soil and water management must be performed in accordance with State of New Hampshire Department of Environmental Services (NHDES) regulatory requirements. NHDES does not provide specific guidance for utility related work; therefore, the process for investigation, cleanup, and reporting for this project was performed in general accordance with *The New Hampshire Code of Administrative Rules, Chapter Env-Or 600 - Contaminated Site Management* (Env-Or-600). Our recommendations for soil and water management are in Appendix A.

Our scope of work included the following tasks:

- Reviewing project information provided by Eversource.
- Advancing three borings on the Property which were completed as monitoring wells.
- Collecting soil, groundwater, and surface water samples for laboratory analytical testing.
- Performing hydraulic conductivity testing.
- Developing recommendations for management of soil and water generated during construction.
- Preparing a Soil and Water Management Plan for the Property.

1. Summary & Findings

GEI's investigation indicated the following:

- Perfluorinated compounds (PFCs) were not present in the soil tested.
- PFC concentrations in groundwater, where encountered, were less than New Hampshire state ambient groundwater quality standards (AGQS) of 0.07 µg/L.
- PFC concentrations in surface water from Knight's Brook tributary exceeded the NH AGQS of 0.07 µg/L.
- Soils at the Property are primarily silts underlain by clay. Based on hydraulic conductivity testing, the estimated dewatering rates for the trench range from approximately 45 to 1,500 gallons per day.
- Where the SRP crosses the Knight's Brook Tributary, the conduit will be installed in the low
 permeability silts and clays. Since the conduit will be installed within a relatively narrow
 band within the subsurface zone, we do not expect that the SRP will impact the current
 existing conditions.
- Under current high-water conditions, the Knights Brook Tributary overtops its banks and
 floods adjacent wetlands indicating that PFOA and PFOS contaminated surface water may be
 impacting the soils currently. Though soils and groundwater within the wetland adjacent to
 the Knights Brook Tributary were not tested, at the nearby upland soil boring location,
 B101MW, PFOA and PFOS were not detected in soils, and PFOA and PFOS concentrations
 in groundwater, when encountered at this location, were less than New Hampshire AGQS of
 0.07 ug/L.

1.1. Soil, Groundwater, & Surface Water Management

Based on the results of our investigation, GEI recommends the following for soil, groundwater, and surface water management:

- <u>Soil:</u> All excess soil will be disposed of offsite at a licensed disposal facility or reused offsite in accordance with applicable reuse regulations and guidelines.
- <u>Groundwater:</u> If dewatering is necessary, groundwater will be treated and discharged to Knight's Brook Tributary under a National Pollutant Discharge Elimination System (NPDES) Remediation General Permit or will be transported offsite for disposal.
- <u>Surface Water:</u> Surface water will be diverted during construction in a manner that does not produce excess water or require additional water management, treatment, or offsite disposal.

The proposed alignment including station locations are shown on Fig. 2 and the Soil and Water Management Plan for Darius Drink Farm is in Appendix A.

2. Background

2.1. Site Description

Eversource proposes to pass the SRP through an existing overhead transmission line corridor on the Darius Frink Farm, located to the north of Pease in Newington, NH (Fig. 1). Darius Frink Farm consists of several buildings, a cultivated vegetable garden, a cow pasture, and uncultivated fields. The work will be performed within an uncultivated field, which is currently maintained for haying operations (the Project Area; Fig. 2). The Project Area is approximately 1,600 feet long and begins at the riser structure on the western edge of the property and ends at Nimble Hill Road (Fig. 2). The proposed trench in the Project Area will be approximately 5-feet-wide and up to 6.5-feet-deep (Fig. 3A).

2.2. Regulatory History

There have been no releases of oil or hazardous material (OHM) reported at the Property, which has been owned by the Frink family for five generations. However, the Property and Project Area are located downgradient of the Pease Site 8 contaminated groundwater plume which contains PFCs associated with former firefighting activities. Since the portion of the SRP in the Project Area will be underground, there is potential to encounter contaminated soil and groundwater during construction activities. PFCs have also been detected in surface water in Knight's Brook Tributary along the western edge of the Project Area and within the proposed SRP alignment.

In May 2016, NHDES enacted Emergency Rule 05-31-16 under Env-Or-600 which includes the addition of PFCs to the New Hampshire AGQS. The AGQS for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and the combined concentration of PFOA and PFOS is 0.07 μ g/L. Env-Or-600 does not currently include soil standards or regulations for PFOA or PFOS.

2.3. Chemicals of Concern

PFOA and PFOS are the primary contaminants of concern in the Project Area. PFOA and PFOS are PFCs and part of a group of man-made chemicals that have been used to manufacture a large range of products including nonstick cookware, carpets, some food packaging, paints, cleaning products, and firefighting foams. PFCs are very persistent in the environment, and are known to travel long distances in groundwater.

PFOA and PFOS contamination has been previously identified downgradient of Pease Site 8 in surface water in local streams (e.g. Knight's Brook tributary, Knights Brook, and Pickering Brook; Fig. 1). The presence of PFOA and PFOS downgradient of Site 8 has been associated with the historic use of aqueous film forming foam (AFFF) at Site 8 at Pease. Around 1970, the US Air Force began using aqueous AFFF for extinguishing petroleum fires during firefighting training activities at the current Site 8 location. Site 8 was used to simulate aircraft crash fires in a pit area using jet fuel, mixed waste oils, and solvents. The mixture was burned before being extinguished with AFFF. Excess fuels and AFFF were discharged from the burn pit into a drainage ditch at the northern end of Site 8.

Prior to this investigation, there was limited information on the presence of PFOA or PFOS at the Property or in the Project Area. The results of our investigation are summarized below and our recommendations for managing soil and water are presented in Appendix A.

3. Site Characterization

In August and September 2016 and April and June 2017, GEI performed an investigation to characterize soil groundwater, and surface water within the Project Area to assess conditions that may be encountered during construction activities. GEI performed soil borings, sampled soil, installed monitoring wells, sampled groundwater, performed hydraulic conductivity tests, and sampled surface water. During sampling, we took special precautions to prevent potential PFC cross-contamination from outside sources including:

- No use of Teflon®-containing materials (i.e. Teflon® tubing, bailers, tape, plumbing paste);
- No Tyvek[®] clothing was worn;
- Clothes treated with stain- or rain-resistant coatings were avoided or had gone through several washings; no PostIt® Notes were handled or brought on site;
- No fast food wrappers, disposable cups or microwave popcorn were brought on site during sampling;
- Hands were washed after handing such items and prior to any sampling activities;

- No use of chemical (blue) ice packs was allowed; and
- Nitrile gloves were worn during all sample collection activities.

3.1. Soil Boring Advancement and Monitoring Well Installation – August 2016

On August 26, 2016, GEI observed DrillEx Environmental (DrillEx) of West Boylston, Massachusetts advance three borings and install three groundwater monitoring wells (B101[MW], B102[MW], and B103[MW]) to evaluate environmental site conditions in the Project Area. Borings were advanced to approximately 8 feet below grade, which is approximately 1.5 feet below the bottom of the proposed trench depth, using hollow stem augers with continuous split spoon sampling. Boring locations are shown on Fig. 2. Boring and monitoring well installation logs are included in Appendix B.

GEI collected two soil samples from each boring consisting of composite samples from the 0 to 4-foot interval and the 4 to 8-foot interval (B101[S1-S2], B101[S3-S4], B102 [S1-S2], B102 [S3-S4], B103[S1-S2], B103[S3-S4]). GEI submitted the soil samples to Alpha Analytical, Inc. (Alpha) of Westborough, Massachusetts to be tested for PFOA, PFOS, and offsite disposal characterization parameters including: volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), RCRA 8 Metals (arsenic, barium, cadmium, chromium (total), lead, mercury, selenium, silver), conductivity, corrosivity, ignitability, and reactivity (cyanide and sulfide). Soil chemical testing results are summarized in Table 1 and the laboratory data report is in Appendix C.

Based on conditions we observed during our subsurface investigation, the shallow subsurface in the Project Area generally consists of silt underlain by clay. The soils encountered during our subsurface investigation are described below, starting at the ground surface. The soil conditions are known only at the boring locations. Conditions between borings may differ significantly from those described below.

- Silt: A sandy silt with mostly non-plastic fines, composes the upper layer of the soil profile.
- Clay: A lean and sandy clay with low plasticity fines.
- <u>Gravel (in B103[MW] only)</u>: Widely graded gravel with silt and sand.

3.2. Hand Auger Borings – April 2017

On April 7, 2017, GEI advanced two shallow borings (HA1 and HA2) in the vicinity of Knight's Brook tributary to assess soil stratigraphy in the proposed trench alignment. The purpose of the April 2017 investigation was to assess the depth of clay and the potential for encountering artesian conditions during trench installation. Borings HA1 and HA2 were advanced to 6.5 feet and 6 feet, respectively and consistent with the proposed trench depth. The borings were sampled continuously using hand auger techniques. Soil samples were not collected for analytical testing because the soil collection method (e.g. hand augers) could result in soil samples being exposed to the contaminated surface water column during extraction. This scenario could potentially result in a false positive for PFCs and not be representative of existing conditions. Surface water sampling and testing results are discussed in Sections 3.3 and 4.2, respectively. Boring locations are shown on Fig. 2. Boring logs are included in Appendix B.

Based on the conditions we observed, the shallow subsurface in the Knight's Brook tributary area generally consists of sandy silt underlain by clay. The soils encountered during our subsurface investigation are described below, starting at the ground surface. The soil conditions are known only at the boring locations. Conditions between borings may differ significantly from those described below.

• Organic Soil: A layer of organic soil composed of low plasticity fines and organic matter at the surface.

- <u>Sandy Silt</u>: A sandy silt with mostly non-plastic fines, composes the upper layer of the soil profile.
- <u>Clay</u>: A lean and sandy clay with low plasticity fines.

We prepared a cross-section of the Knight's Brook tributary based on and interpolated from the information collected from the hand augers and previous investigations by GEI and others. Based on the available boring information, the general subsurface conditions appear to be consistent between F107-109 and GEI-101 with silty sands overlying clay layer. Boring logs are included in Appendix B and the cross-section is shown on Fig. 3A.

3.3. Groundwater & Surface Water Sampling – 2016

On August 29, 2016, GEI developed monitoring wells B101(MW) and B102(MW). Groundwater was measured at 4.79 feet and 3.77 feet in B101(MW) and in B102(MW), respectively. B103(MW) was not developed because the well was dry. GEI developed the wells by surging and removing water using a dedicated Watera® check valve and tubing. A well was considered developed when either:

- 10-well volumes were removed; or
- Water removed from the well was relatively free of fine-grained material; or
- The well ran dry.

Wells B101(MW) and B102 (MW) ran dry after removing approximately 2.25 gallons and 6 gallons, respectively.

On September 1, 2016, GEI returned to the Property to collect groundwater samples from B101(MW) and B102(MW) using low-flow methods. Groundwater was not detected in B103(MW); therefore, a groundwater sample was not collected. GEI used peristaltic pumps for low flow purging. Dedicated tubing was lowered to the mid-point of the saturated screen interval and a water level was used to periodically measure the water level in the well during purging. Purge rates were adjusted to minimize drawdown to the extent feasible. During low flow purging a YSI Sonde 6200 was used to measure temperature, pH, specific conductivity, dissolved oxygen, oxidation reduction potential, and turbidity. GEI collected a groundwater sample from the well when each of the parameters was stable for a minimum of three consecutive readings. Additionally, we collected a surface water sample (SW1) from Knight's Brook Tributary. Groundwater and surface water samples were submitted to Alpha to be tested for PFOA and PFOS.

Groundwater and surface water chemical testing results are summarized in Table 2 and the laboratory data report is in Appendix C. Groundwater measurements observed during each visit are included in Table 3.

3.4. Groundwater Sampling – 2017

On April 7, 2017, GEI returned to the property to gauge wells during spring conditions. At that time, we observed the field was flooded due to spring melt and heavy rains. As a result, groundwater levels in all three wells (B101[MW], B102[MW], and B103[MW]) was at approximately the ground surface. Due to these flooding conditions groundwater sampling was not performed.

On June 2, 2017 GEI returned to the property to collect groundwater level information and samples from the three monitoring wells under normalized spring conditions. During this groundwater sampling event water was detected in all three wells and groundwater samples were collected from each using the methods described in Section 3.3. Groundwater was measured at 0.83 feet, 1.12 feet, and 2.31 feet in B101(MW), B102(MW), and B103(MW), respectively. Groundwater and surface water samples were submitted to Alpha to be tested for PFOA and PFOS.

Groundwater and surface water chemical testing results are summarized in Table 2 and the laboratory data report is in Appendix C. Groundwater measurements observed during each visit are included in Table 3.

3.5. Hydraulic Conductivity Testing

On September 15, 2016, GEI conducted rising head well permeability tests on B101(MW) and B102(MW). The tests were performed using dedicated In-Situ Level TROLL 700 data loggers. Prior to starting the test, GEI collected water level and total depth readings from the wells. Groundwater was measured at 4.92 feet and 4.39 in B101(MW) and B102(MW), respectively. Groundwater was not detected in B103(MW). The data loggers were then placed near the bottom of each well and a peristaltic pump was used to draw down the water level. The water was then allowed to recharge to approximately the pre-purge level while the data loggers recorded the rebound in water level. GEI collected manual water level measurements throughout the duration of each test in order to perform quality control checks on the TROLL readings. We performed two tests on B101(MW) and three tests on B102(MW). B103(MW) was not tested because it was dry. Groundwater measurements observed during each visit are included in Table 3. The hydraulic conductivity testing results are summarized in Table 4.

4. Results

4.1. Soil Analytical Results

Soil samples did not contain detectable levels of PFOA, PFOS, VOCs, SVOCs, or PCBs. Soil chemical testing results indicated that presence of the following compounds above the laboratory detection limits:

- TPH
- Metals: arsenic, barium, chromium and lead.

TPH was detected above laboratory detection limit in samples B101(S1-S2); however, the concentration was well below the NHDES Method 1 Soil Standard (NH S-1). Barium, chromium, and lead were detected in all the soil samples at concentrations less than NH S-1. Arsenic was detected in B102(S1-S2) and B102(S3-S4) at 12 milligrams per kilogram (mg/kg). This is slightly above the NH S-1 standard and the NHDES Background Concentration of 11 mg/kg but is still likely attributable to background conditions at the Property. Soil testing results are summarized in Table 1 and the laboratory data report is in Appendix C.

4.2. Groundwater & Surface Water Analytical Results

Groundwater and surface water testing results indicated the following:

- PFOA and PFOS were not detected in B101(MW) in September 2016. PFOA and PFOS were detected in B101(MW) in June 2017 but at concentrations below the NH AGQS of 0.07 μg/L.
- PFOA and PFOS were detected in B102(MW) in both September 2016 and June 2017 but at concentrations below the NH AGQS of 0.07 µg/L.
- PFOA was not detected in B103(MW). PFOS was detected in B103(MW) but at concentrations below the NH AGQS of 0.07 µg/L.
- PFOA and PFOS were detected in sample SW1 from Knight's Brook at 0.842 μg/L and 2.91 μg/L, respectively. The total PFOA/PFOS concertation was 3.752 μg/L. Both the individual and total concentrations exceed the NH AGQS of 0.07 μg/L.

 PFOA and PFOS were not detected in a field blank sample collected during the June 2017 groundwater sampling event.

Groundwater and surface water testing results are summarized in Table 2 and the laboratory data report is in Appendix C.

4.3. Hydraulic Conductivity

Based on the testing results, we estimated the following average hydraulic conductivities:

- B101(MW) has an average hydraulic conductivity of 0.062 feet/day which is likely due to the silt and clay observed during installation of the well.
- B102(MW) has an average hydraulic conductivity of 0.222 feet/day which is likely due to the sand seam observed within the well screen interval. The sand seam was observed in the boring at approximately 5 feet below the ground surface.
- B103(MW) hydraulic conductivity was not calculated because the well was dry at the time of testing.

The hydraulic conductivity testing results are summarized in Table 4.

4.4. Groundwater Model & Dewatering Estimate

GEI calculated the expected dewatering rates of groundwater within the proposed trench alignment for both low and high groundwater conditions, as experienced in the fall of 2016 and spring of 2017, respectively. Based on our calculations, we estimate dewatering may range from 45 to 1,500 gallons per day (gpd) depending on the location of the excavation and groundwater levels. Our calculations are based on the limited geologic information observed during installation of B101(MW), B102(MW), and B103(MW). The estimated dewatering rates are as follows:

- Near B101(MW): Approximately 45 to 82 gpd during a low water condition and approximately 486 to 770 gpd during a high groundwater condition.
- Near B102(MW): Approximately 104 to 187 gpd during a low groundwater condition and approximately 942 to 1466 gpd during a high groundwater condition.
- Near B103: Based on the soil encountered in B103(MW), we estimate the dewatering rates near B103(MW) will likely be between the estimated ranges for B101(MW) and B102(MW). The trench near B103(MW) may also be dry if construction takes place during low groundwater conditions similar August and September of 2017.

The groundwater flow model and dewatering estimate is in Appendix D.

GEI has additionally evaluated the potential for changes in groundwater flow patterns and the potential for damming of surface water or groundwater due to the installation of the new conduit duct bank. The duct bank measures approximately 2-feet 6-inches tall by 3-feet 5-inches wide and consists of several polyvinyl chloride (PVC) and high-density polyethylene (HDPE) conduits encased in concrete. The top of the duct bank will be approximately 2.5-feet below grade and topped with fluidized thermal backfill west of Station 499+50 and 4-feet below grade and topped with native soils in the agricultural area east of Station 499+50. The soil boring data indicate that the duct bank will be located within shallow soils in a stratum consisting primarily of low permeability clays and silts. Given that the duct bank will occupy a relatively narrow band area in low permeability material, it should not impede the flow of groundwater.

With respect to surface water flows, the top of the proposed duct bank will be buried approximately 2.5' below the bottom of the tributary; therefore, surface water flow will not be impacted by the duct

bank. The Knight's Brook Tributary is spring fed and the general subsurface conditions observed consist of a sandy bottom underlain by silt and clay. The presence of this type of subsurface stratification indicates that there is likely minimal contribution from groundwater to surface water flow other than from the source spring(s). It is our opinion that that contamination present in surface water is a result of the springs that feed the Knight's Brook Tributary and not from impacted groundwater in adjacent shallow soils. Eversource understands, and has observed, that under current conditions the Knights Brook Tributary overtops its banks and floods the adjacent wetlands under high water conditions indicating that PFOA and PFOS contaminated surface water may be impacting the Property currently. However, based on the results of the subsurface investigation performed by GEI and presented in the Soil and Water Investigation and Management Plan for Darius Frink Farm:

• Though soils and groundwater within the wetland adjacent to the Knights Brook Tributary were not tested, at the nearby upland soil boring location, B101MW, PFOA and PFOS were not detected in soils, and PFOA and PFOS concentrations in groundwater, when encountered at this location, were less than New Hampshire AGQS of 0.07 ug/L.

5. Construction Worker Screening Levels

General screening levels for construction worker exposure to PFOA and PFOS in soil and groundwater are not available. Based on information from the United States Environmental Protection Agency (USEPA) and New Hampshire Environmental Health Program (EHP) we have derived the following construction work screening levels for this project, where applicable:

5.1. Soil

GEI derived a human health risk-based screening level (SL) for a construction worker exposure to PFOA and PFOS in soil based on the New Hampshire Environmental Health Program (EHP) and NHDES methodology applied to derive a Direct Contact Risk-Based (DCRB) soil concentration for PFOA and PFOS in soil. Exposure assumptions used to derive these soil SLs were similar to NHDES Soil Category S-3 exposures considered protective of adult exposures to soil during short but intense exposures, such as during excavation work. These risk-based soil SLs account for exposure to impacted soil as a result of incidental ingestion and dermal contact during excavation work. Table 5 presents the soil SL derived for both PFOA and PFOS of 0.5 mg/kg.

The adult construction worker was assumed to be exposed to outdoor soil a total of 250 days a year. This assumption was based on an excavation worker exposed to soil 5 days per week for a 1-year excavation project (assumes 350 total days of excavation) and assuming a worker takes 2 weeks of vacation in a year. Based on NHDES guidance, the adult excavation worker was assumed to ingest 480 mg of soil per day of intense excavation work. Also based on NHDES guidance, a soil adherence factor equal to 0.2 mg/cm² was assumed and an exposed skin surface area of 3,104 cm² was assumed, which includes hands, forearms, face and neck. Additional exposure parameters based on NHDES guidance are presented in Table 5. USEPA applies different exposure assumptions for the construction worker exposure scenario in the derivation of Regional Screening Levels (RSLs) for soil. Based on USEPA exposure assumptions for the construction worker, which are noted in Table 5, a slightly higher Construction Worker Soil Screening Level for PFOA and PFOS of 0.7 mg/kg could be derived.

The USEPA derived a chronic Reference Dose (RfD) to evaluate non-cancer effects for PFOA and PFOS of 2x10⁻⁵ mg/kg-day, based on developmental effects. USEPA also derived a Cancer Slope Factor (CSF) for PFOA of 0.07 (mg/kg-day)-1; however, according to USEPA, the non-cancer developmental endpoint for PFOA represented by the RfD is protective of the cancer endpoint. In addition, because the critical effect identified for PFOA and PFOS is a developmental endpoint and can potentially result from a short-term exposure during a critical period of development, USEPA concludes that the chronic RfD is applicable to both short-term and chronic risk assessment scenarios.

Therefore, it is appropriate to use the chronic RfD of 2x10⁻⁵ mg/kg-day derived for both PFOA and PFOS to estimate short-term or subchronic risk-based SLs for a construction worker.

5.2. Water

USEPA derived a drinking water Health Advisory (HA) and NHDES derived the AGQS for PFOA and PFOS of $0.07~\mu g/L$. This HA is considered protective of lifetime exposures to PFOA and PFOS from residential ingestion of drinking water. This HA does not consider potential exposure to PFOA and PFOS as a result of dermal exposure or inhalation exposure. However, USEPA notes that neither PFOA nor PFOS are volatile and are therefore not expected to be present in air except if bound to particulate matter. According to USEPA's Health Effects Support Document for PFOA (May 2016), there is evidence that PFOA is absorbed following dermal exposure. The EPA document presents a permeability coefficient for PFOA of $9.49~x~10^{-7}$ cm/hour for human skin. USEPA risk based equations for deriving RSLs (May 2016) for dermal exposure to water were used to derive the Construction Worker Water Screening Level for PFOA and PFOS of $1,000~\mu g/L$ iter.

6. Soil and Water Management

Since the work is being performed in the downgradient plume of Site 8, proper procedures for on-site management and off-site disposal of soil and groundwater are necessary to reduce the potential for exposure to PFOA and PFOS and be protective of workers and the public. GEI prepared a Soil and Water Management Plan that presents the requirements and procedures to be undertaken by Eversource personnel or hired contractors that excavate soil or manage soil, groundwater, or surface water during installation of a new overhead or underground electric transmission line at Darius Frink Farm. The Soil and Water Management Plan is in Appendix A.

Based on the results of our investigation, GEI recommends the following for soil, groundwater, and surface water management:

- <u>Soil:</u> All excess soil will be disposed of offsite at a licensed disposal facility or reused offsite in accordance with applicable state and federal regulations.
- Groundwater: If dewatering is necessary, groundwater will be managed by one or more of the following methods:
 - Groundwater may be treated and discharged to Knight's Brook Tributary under a National Pollutant Discharge Elimination System (NPDES) Remediation General Permit
 - O Groundwater may be temporarily stored onsite in a fractionation (frac) tank and then pumped and transported offsite for disposal.
 - o Groundwater may be directly pumped from the excavation into a vacuum truck for offsite disposal.
- <u>Surface Water:</u> Surface water will be diverted during construction in a manner that does not produce excess water or require additional water management, treatment, or offsite disposal.

7. Limitations

This report was prepared for the exclusive use of Eversource Energy. The conclusions provided by GEI in this report are based on the information contained in this report. Additional information not available to GEI at the time this report was prepared may result in a modification of our conclusions. This report has been prepared in accordance with generally accepted engineering and geohydrological practices. No warranty, express or implied, is made.

Please contact Jim Ash at <u>JAsh@geiconsultants.com</u> or 781-721-4018 or Mike Sabulis at <u>MSabulis@geiconsultants.com</u> or 781-721-4114 if you have any questions.

Sincerely,

GEI CONSULTANTS, INC.

James R. Ash, P.E., LSP Senior Vice President Michael W. Sabulis Project Manager

CRC/MWS/JRA:jam

Attachments:

Table 1 – Laboratory Testing Results – Soil

Table 2 – Laboratory Testing Results – Groundwater and Surface Water

Table 3 – Water Level Measurements

Table 4 – Hydraulic Conductivity Test Results

Table 5 – Derivation of Soil Screening Levels

Fig. 1 – Site Location Map

Fig. 2 – Project Area Plan

Fig. 3A – Cross Section – Knight's Brook Tributary

Appendix A – Soil and Water Management Plan

Appendix B – Boring and Monitoring Well Installation Logs

Appendix C – Laboratory Test Reports

Appendix D – Groundwater Model Description

 $B\ Working \ | EVERSOURCE \ | 1607530 - EVS-SRP\ NH \ | 01_ADMIN \ | Soil\ and\ GW\ Mgtm\ Plan\ Frink\ rev\ 12_2017 \ | Soil\ and\ Water\ Letter\ Report\ rev\ 12-15-2017. docx$

Tables		

Table 1. Laboratory Testing Results - Soil Darius Frink Farm
Eversource NH Seacoast Reliability Project
Newington, New Hampshire

					В	101	B1	02	B103	
					S1-S2	S3-S4	S1-S2	S3-S4	S1-S2	S3-S4
						6/2016		2016		2016
					0-4	4-8	0-4	4-6.8	0-4	4-8
				NHDES						
Analyte	Method	Units	NH S-1	Background						
Perflourinated Compounds (PFCs)	537	ng/g		_uong.ounu						
Perfluorooctanoic Acid (PFOA)	337	rig/g	NS	NS	< 1.96	< 1.96	< 1.95	< 1.95	< 1.93	< 2 02
Perfluorooctane Sulfanate (PFOS)			NS	NS NS	< 1.96	< 1.96	< 1.95	< 1.95	< 1.93	< 2 02
Volatile Organic Compounds (VOCs)	8260C	mg/kg	INO	INO	× 1.90	× 1.90	× 1.95	× 1.95	× 1.95	< Z 0Z
Total VOCs	02000	mg/kg	NS	NS	ND	ND	ND	ND	ND	ND
Semi-Volatile Organic Compounds (SVOCs)	8270D	mg/kg	NO	INO	IND	IND	ND	ND	ND	ND
Total SVOCs	02100	mg/kg	NS	NS	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons (TPH)	8015	mg/kg	110	INO	ND	ND	ND	ND	ND	ND
Total Petroleum Hydrocarbons	0013	mg/kg	10000	NS	39.0	< 39 8	< 39.5	< 39.9	< 35.5	< 34.1
Polychlorinated Biphenyls (PCBs)	8082A	mg/kg	10000	INO	39.0	\ 39 0	\ 39.5	\ 39.9	× 35.5	V 34.1
Total PCBs	0002A	mg/kg	1	NS	ND	ND	ND	ND	ND	ND
Total Metals		mg/kg		INO	IND	IND	ND	ND	ND	ND
Arsenic	6010C	mg/kg	11	11	7.4	5.6	12	12	9.0	7.1
Barium	6010C		1,000	NS	28	33	44	31	30	18
Cadmium	6010C		33	2	< 0.47	< 0.48	< 0.47	< 0.49	< 0.42	< 0.42
Chromium (Total)	6010C		1.000	33	14 FG	16 F-,G	19 F-,G	18 F-,G	30 F-,G	26 F-,G
Lead	6010C		400	51	5.7 F-	4.6 F-	6.8 F-	8.9 F-	7.2 F-	8.6 F-
Mercury	7471B		7	0.3	< 0.08	< 0.08	< 0.08	< 0.08	< 0.07	< 0.07
Selenium	6010C		180	5	< 0.94	< 0.96	< 0.94	< 0.98	< 0.85	< 0.84
Silver	6010C		89	NS	< 0.47	< 0.48	< 0.47	< 0.49	< 0.42	< 0.42
Other					****		Ų. I .	0.10	0.12	0.12
Conductivity	EPA 120.1M	umhos/cm	NS	NS	< 10	< 10	< 10	28 G	< 10	44 G
Corrosivity (pH)	9045D	S.U.	NS	NS	6.2 A	6.4 A	6.3 A	7.4 A	5.7 A	0.3
Oxidation-Reduction Potential	ASTM D1498-76M	mv	NS	NS	180 A	170 A	170 A	190 A	170 A	150 A
Flashpoint	1030	deg F	NS	NS	NI	NI	NI	NI	NI	NI
Reactive Cyanide	CHAP7	mg/kg	NS	NS	< 10	< 10	< 10	< 10	< 10	< 10
Reactive Sulfide	CHAP7	mg/kg	NS	NS	< 10	< 10	< 10	< 10	< 10	< 10
Percent Solids	SM 2540G-97 MOD	%	NS	NS	84.2	80 9	83.6	79.2	93 3	92.4

General Notes

- 1. In general, analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
- 2. "<" = The analyte was not detected at a concentration above the specified laboratory reporting limit.
- 3. NH S-1 and NHDES Background standards from The New Hampshire Code of Administrative Rules, Chapter Env-Or 600 Contaminated Site Management.
- 4. Values in bold exceed the NH S-1 and/or NDHES Background values.
- 5. NS = No standard or criteria has been established for this analyte.
- 6. NI = Not Ignitable
- 7. ND = Not detected.
- 8. Soil samples for VOC analysis were preserved in the field with methanol.
- 10. mg/kg = milligrams per kilogram.
- 9. umhos/cm = micromhos per centimeter.
- 10. S.U. = standard units.
- 11. mv = millivolts.
- 12. deg F = degrees Fahrenheit.
- 13. ng/g = nanograms per gram.

Qualifying Notes

- A The result is estimated due to exceedance of holding time criteria.
- F- The result has a low bias due to matrix spike recovery below lower control limits.
- G The result is estimated due to duplicate precision outside control limits.

Table 2. Laboratory Testing Results - Groundwater and Surface Water **Darius Frink Farm Eversource NH Seacoast Reliability Project** Newington, New Hampshire

	ple Location:	1607530-	B101(MW)	1607530-l	3102(MW)	1607530-B103(MW)	1607530-SW1		
	Sample Date: creen Interval:	9/1/2016 2-8'	6/2/2017 2-8'	9/1/2016 2-7'	6/2/2017 2-7'	6/2/2017 2-8'	9/1/2016 NA		
Analyte Method Units NH AGQS									
Perflourinated Compounds (PFCs)	537	ug/L							
Perfluorooctanoic Acid (PFOA)			0.07	< 0.00786	0.00248	0.0112	0.00711	< 0.00185	0.842
Perfluorooctane Sulfanate (PFOS)			0.07	< 0.00786	0.00305	0.0161	0.0142	0.00187	2.91
Total PFCs			0.07	ND	0.00553	0.0273	0.02131	0.00187	3.752

General Notes:

- 1. In general, analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
- "<" = The analyte was not detected at a concentration above the specified laboratory reporting limit.
- 3. NH AGQS = New Hampshire Ambient Groundwater Quality Standards
- NH AGQS for PFOA and PFOS from Emergency Rule 05-31-16 to Amend The New Hampshire Code of Administra ive Rules Env-OR 603.03(b), eff 6-1-15 4.
- Values in bold exceed he NH AGQS values. 5.
- ND = Not detected. 6.
- 7. ug/L = milligrams per liter.

Table 3. Water Level Measurements
Darisu Frink Farm
Eversource NH Seacoast Reliability Project
Newington, New Hampshire

	August 26, 2016		August 29, 2016		September 1, 2016		September 15, 2016		April 7,2017		June 2, 2017	
									Depth to		Depth to	
	Depth to GW	Depth to GW	Depth to GW	Depth to GW	Depth to GW	Depth to GW	Depth to GW	Depth to GW	GW from	Depth to GW	GW from	Depth to GW
	from Top of	from Ground	from Top of	from Ground	from Top of	from Ground	from Top of	from Ground	Top of PVC	from Ground	Top of PVC	from Ground
Well ID	PVC (ft)	Surface (ft)	PVC (ft)	Surface (ft)	PVC (ft)	Surface (ft)	PVC (ft)	Surface (ft)	(ft)	Surface (ft)	(ft)	Surface (ft)
MW101	ND	ND	7.91	4.79	7.79	4.67	8.04	4.92	3.41	0.29	3.95	0.83
MW102	7.29	4.39	6.67	3.77	6.79	3.89	7.18	4.28	3.61	0.71	4.02	1.12
MW103	NM	NM	ND	ND	ND	ND	ND	ND	At grou	nd surface	2.11	2.31

Notes:

- ft = feet
- 2. GW = groundwater
- 3. NM = Not measured
- 4. ND = Not detected

Table 4. Hydraulic Conductivity Test Results - Rising Head Test Darius Frink Farm Eversource NH Seacoast Reliability Project Newington, New Hampshire

	Hydraulic Conductivity (ft/day)							
Well ID	Test 1	Test 2	Test 3	Average				
B101(MW)	0.08	0.05	NA	0.062				
B102(MW)	0.23	0.22	0.22	0.222				
B103(MW)	NT	NT	NT					

Notes:

- 1. NA = Not applicable
- 2. NT = Not testsed due to dry well
- 3. ft = feet

Table 5. Derivation of Soil Screening Levels for PFCs

Darius Frink Farm

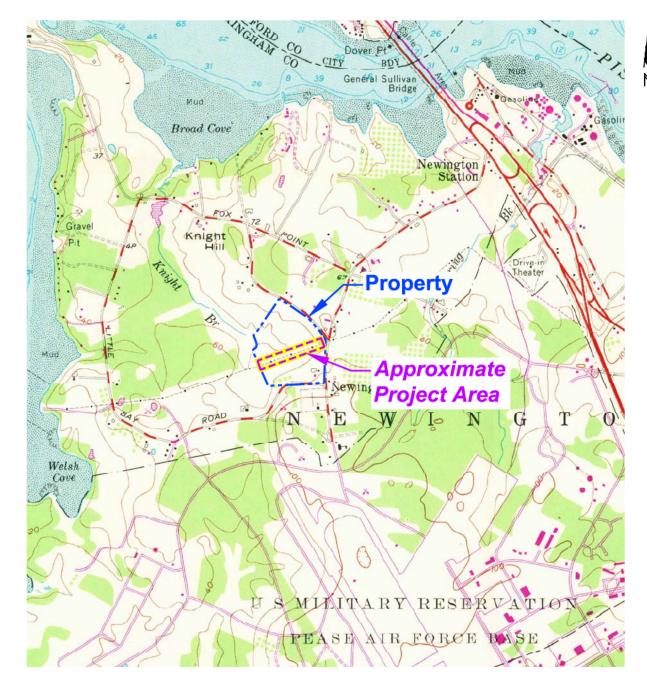
Eversource NH Seacoast Reliability Project

Newington, New Hampshire

Development of NHDES Direct Contact Risk-Based Concentration (DCRB) for PFOA and PFOS in Soil

Soil Category	S-3	
Sensitive Receptor	Adult Construction/Excavation Worker	
RSCF	0.2	NHDES = Relative Source Contribution Factor
RfD (mg/kg-day)	2.00E-05	USEPA, 2016
CF (mg/kg)	1.00E+06	conversion factor
IR (mg/day)	480	MADEP uses 100 mg/day and USEPA uses 330 mg/day for CW
RAFo	1	NHDES
RAFd	0.1	NHDES
SA (cm2)	3,104	NHDES; USEPA uses 3,527 cm2 for CW
AF (mg/cm2)	0.2	NHDES; USEPA uses 0.3 mg/cm2 for CW
EF (days per year)	250	12 month project (5 days/week for 350 days in a year)
ED (years)	1	professional judgement
AT (days)	250	averaging period for a subchronic exposure is the subchronic period
BW (kg)	70	NHDES; USEPA uses 80 kg
S-3 DCRB Soil Concentration (mg/kg)=	0.5	

Concentration in Soil (mg/kg) = RSCF * RfD* CF


[(IR * RAFo) + (SA * AF * RAFd)] * [(EF * ED)/(AT * BW)]

Notes:

1. NHDES Soil S-1 = 0.5 mg/kg for PFOA and PFOS

2. NHDES Soil S-2 = 4.3 mg/kg for PFOA and PFOS

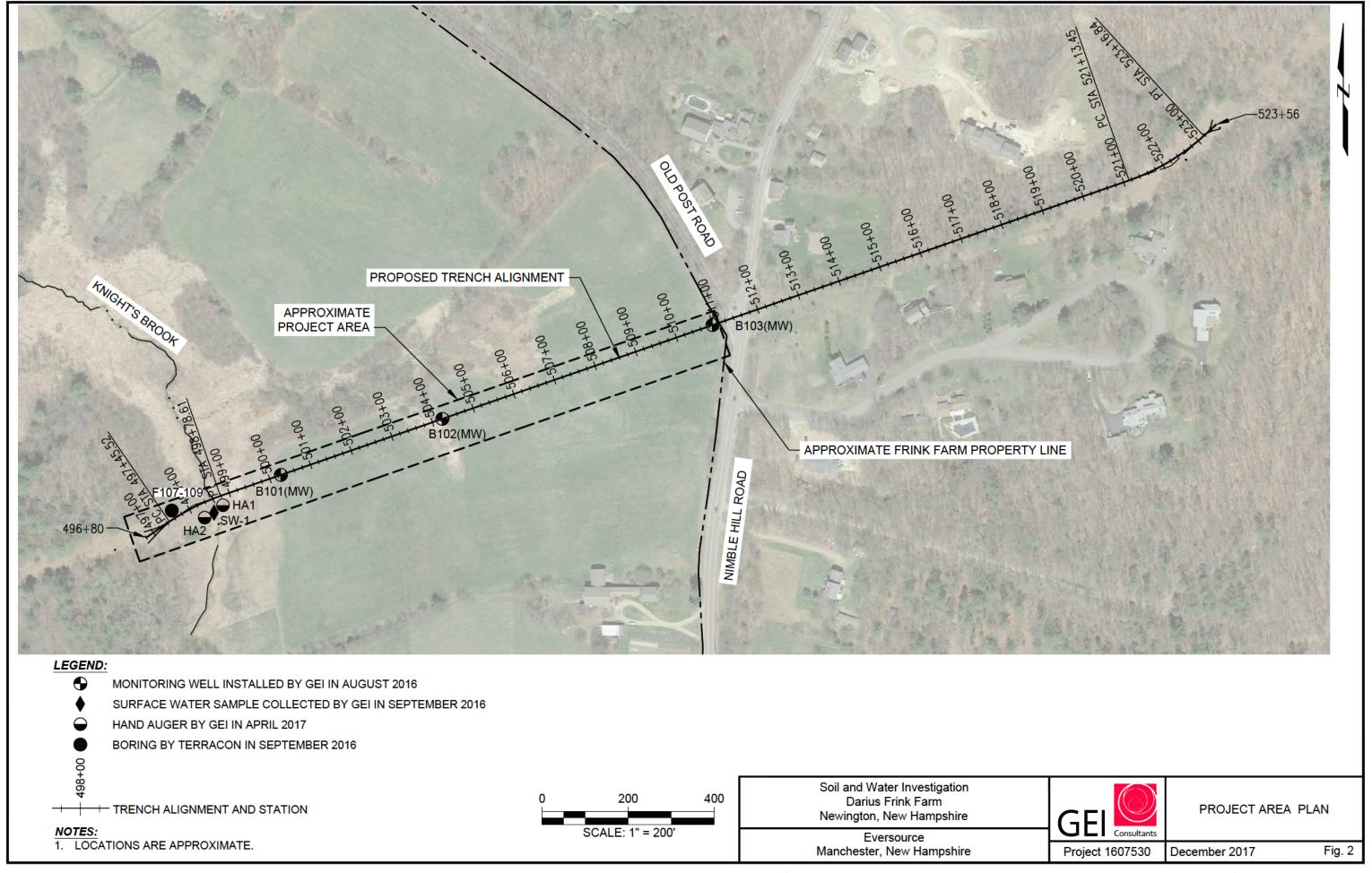
Figures		

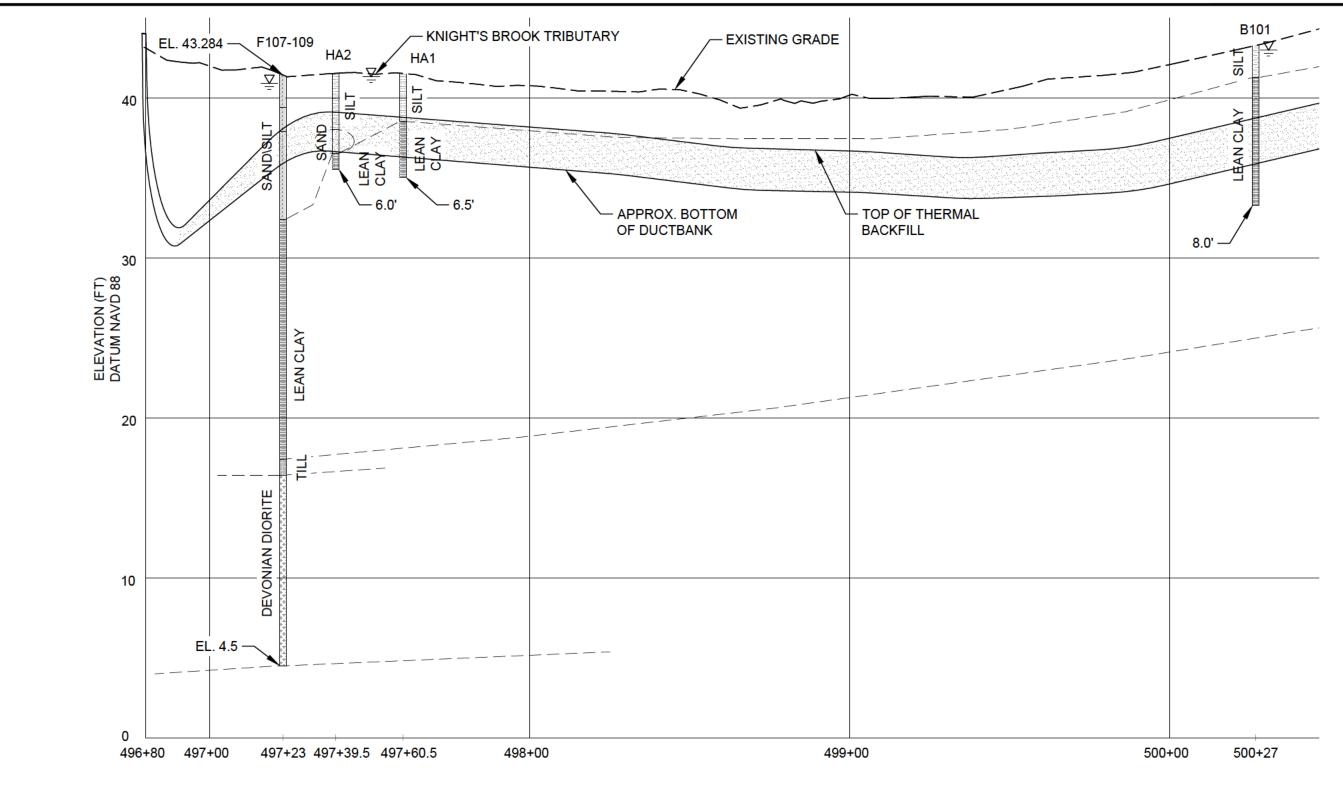
This Image from U.S.G.S. Topographic 7.5 Minute Series Portsmouth, NH - ME Quadrangle, 1981.

Datum is National Geodetic Vertical Datum of 1929 (NGVD29).

Contour Interval is 20 Feet.

Soil and Water Management Plan Darius Frink Farm Newington, New Hampshire

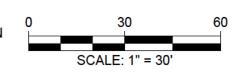

Eversource Energy Manchester, New Hampshire



SITE LOCATION MAP

December 2017

Fig. 1



LEGEND:

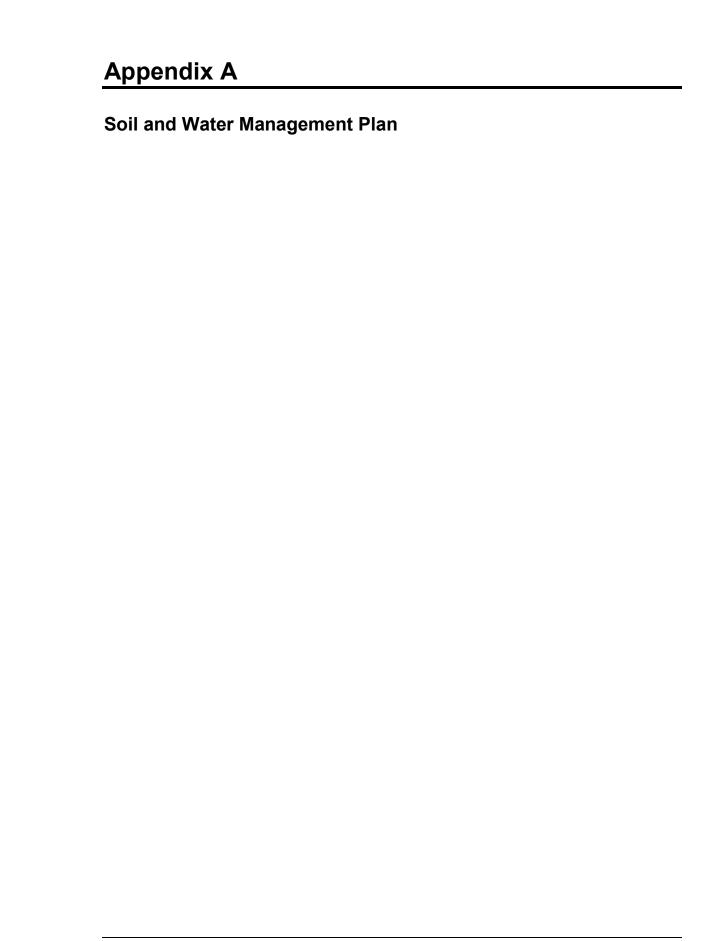
--- INTERPOLATED STRATA BOUNDARIES

NOTES:

- EXISTING GRADE AND DUCTBANK PROFILE FROM POWER ENGINEERS DRAWINGS, RECEIVED SEPTEMBER 2017.
- 2. ELEVATION APPROXIMATED FROM PROJECT PLANS, CIVIL DRAWINGS.
- TERRACON BORING ELEVATIONS AND SOIL PROFILE FROM TERRACON BORING LOG.

Soil and Water Investigation Darius Frink Farm Newington, New Hampshire

Eversource
Manchester, New Hampshire


Eversource
Project 19

GEI Consultants
Project 1607530

CROSS SECTION -KNIGHT'S BROOK TRIBUTARY

December 2017

ber 2017 Fig. 3A

SOIL AND WATER MANAGEMENT PLAN

Eversource Seacoast Reliability Project Darius Frink Farm Newington, New Hampshire

1. Introduction

This document presents the requirements and procedures to be undertaken by Eversource personnel or hired contractors that excavate soil or manage soil, groundwater, or surface water during installation of a new underground electric transmission line at Darius Frink Farm in Newington, New Hampshire (the Property; Fig. 1). The new transmission line is being installed as part of Eversource's Seacoast Reliability Project (SRP). The new transmission line will be installed in Eversource's Right of Way (ROW) through the Property (the Project Area; Fig. 1) that is currently used for above-ground electric lines and towers. The Project Area is approximately 1,600 feet long and begins at the riser structure on the western edge of the property (Station 496+80) and ends at Nimble Hill Road (Station 511+00) (Fig. 2). This Soil and Water Management Plan is applicable only to the Project Area shown on the plan, not the entire Property.

2. Background and Regulatory History

There have been no releases of oil or hazardous material (OHM) reported at the Property, which has been owned by the Frink family for five generations. However, the Property and Project Area are located downgradient of the Pease Site 8 contaminated groundwater plume which contains perfluorinated compounds (PFCs) associated with former firefighting activities. Since the portion of the SRP in the Project Area will be underground, there is potential to encounter contaminated soil and groundwater during construction activities. Additionally, PFCs have been detected in surface water along the eastern edge of the Project Area in Knight's Brook.

In May 2016, NHDES enacted Emergency Rule 05-31-16 under Env-Or-600 which includes the addition of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to the New Hampshire state ambient groundwater quality standards (AGQS). The AGQS for PFOA, PFOS, and the combined concentration of PFOA and PFOS is $0.07~\mu g/L$. Env-Or-600 does not currently include soil standards or regulations for PFOA or PFOS.

Proper procedures for on-site management and off-site disposal of soil and water are necessary to reduce the potential for exposure to oil and hazardous materials (OHM) and be protective of workers and the public. The objectives of this Soil and Water Management Plan are to:

- Ensure that soil and water are managed appropriately on-site or disposed of appropriately off-site if necessary; and
- b) Specify procedures to limit exposures to contaminated soil or water via dermal contact, inhalation, and/or ingestion.

3. Preconstruction Requirements

The following must be completed before subsurface work commences, and approved by Eversource:

• Notify Eversource Personnel: The Eversource Project Manager shall be notified at least 10 business days prior to performing planned (non-emergency) soil excavation or other subsurface work that will require management of soil, groundwater, or surface water. Also, Eversource shall be notified immediately (within one hour) if unanticipated conditions are encountered such as buried debris including drums, tanks or other containers.

Soil and Water Management Plan Eversource Seacoast Reliability Project Frink Farm Newington, New Hampshire

- Health and Safety Plan (HASP): The contractor selected to perform the work in the Project Area is expected to prepare a HASP for its workers and the public to address the anticipated contaminants of concern, specifically PFOA, PFOS, and arsenic. The HASP shall include historical site characterization data. The HASP shall be prepared by a Certified Industrial Hygienist or other qualified individual appropriately trained in worker health and safety procedures and requirements. The contractor is solely responsible for conducting the work in a manner that is protective of workers and the public. Employees that will be handling contaminated soil or water are required to have OSHA HAZWOPER 40-hour training.
- **Regulatory Review and Submittals:** A review of other federal, state, or local regulatory requirements (e.g., National Pollutant Discharge Elimination System permits) shall be conducted before work commences depending on the location and type of planned activity.

4. Soil Pre-Characterization and Classification

GEI conducted soil pre-characterization in August 2016 which did not indicate the presence of PFCs in soil at the property. However, since the extent of the investigation was limited and testing of soil and sediments within the Knight's Brook Tributary was not performed, all excess soil will be disposed of offsite at a licensed disposal facility. All backfill and restoration activities, including soil decompaction, fertilization, and seeding, shall be in accordance with the *Soil Management Plan for Easement* prepared by Gove Environmental Services (Attachment A-1).

The Contractor shall identify an appropriate off-site reuse or disposal facility and submit the facility name and location to Eversource for review and approval. GEI's pre-characterization data may be sufficient to meet acceptance criteria for offsite reuse, recycling or disposal. If required by the selected reuse, recycling or disposal location, additional characterization for waste profiling of Project Area soil may be performed in-situ or from excavated or stockpiled material.

Based on the proposed Project Area trench dimensions of 5-feet wide by up to 6.5-feet-deep and 1,600-feet-long, a total of approximately 1,925 cubic yards of soil may be generated during trenching activities on Frink Farm. For portions of the new underground duct bank located in the agricultural zone between approximately 499+50 to 511+00 the transmission line must be covered with at least 4 feet of native material (Fig. 2). All excess soil will be disposed of offsite at a licensed disposal facility or reused offsite in accordance with applicable reuse regulations and guidelines.

5. Soil Excavation

Excavated material shall be handled in general accordance with *The New Hampshire Code of Administrative Rules, Chapter Env-Or 600 - Contaminated Site Management* (Env-Or-600) and all other applicable federal, state, and local laws, regulations, and bylaws.

- Materials Management Area: If excavated materials are to be stored or stockpiled in the Project Area, an Excavated Material Management Area will be established by the contractor and approved by Eversource, ensuring it is in accordance with NHDES Env-Or 611.05(b). The Materials Management Area shall be within the Eversource Project Area.
- **Dust Monitoring:** As needed, the contractor shall employ control measures to minimize airborne particulates during excavation or soil management (e.g. water sprays, mists, etc.).
- Offsite Transport and Documentation: The Contractor shall select a location for off-site reuse and submit to Eversource for approval. Excess excavated material shall be loaded and transported to an appropriate off-site reuse, recycling or disposal location. Person(s) transporting the excavated materials shall be licensed and permitted to transport such material in state(s) having jurisdiction. Trailers used for transport shall have covers to prevent dust blow-off.

Soil and Water Management Plan Eversource Seacoast Reliability Project Frink Farm Newington, New Hampshire

The contractor shall prepare disposal documentation and shall provide Eversource with material tracking and disposal records and certifications. Project documentation shall be maintained, including accurate records of material tracking, disposal transportation manifests (e.g., Straight BOL), and if necessary, additional environmental testing required by the receiving location.

- **Stream Crossing:** While performing the excavation through the Knight's Brook Tributary, the Contractor will:
 - o Construct an access road to cross the tributary that meets the specified requirements and permit obligations for the project.
 - o Install the necessary equipment to divert surface water around the excavation.
 - o Install the necessary materials to prevent surface water from entering the excavation during construction.

The requirements for crossing the Knight's Brook Tributary and diverting the stream during work is shown on Fig. 3B.

6. Dewatering

- **Groundwater Pre-characterization and Classification:** GEI tested groundwater for PFOA and PFOS in September 2016 and June 2017. Groundwater testing results indicated the following:
 - PFOA and PFOS were not detected in B101(MW) in September 2016. PFOA and PFOS were detected in B101(MW) in June 2017 but at concentrations below the NH AGQS of 0.07 μg/L.
 - PFOA and PFOS were detected in B102(MW) in both September 2016 and June 2017 but at concentrations below the NH AGQS of $0.07 \,\mu g/L$.
 - PFOA was not detected in B103(MW). PFOS was detected in B103(MW) but at concentrations below the NH AGQS of $0.07 \,\mu g/L$.

Prior to the start of construction, additional groundwater samples will be collected, if possible, from B101(MW), B102(MW), and B103(MW), to assess site conditions at the time of construction.

• Groundwater Management

GEI conducted hydraulic conductivity testing and calculated expected dewatering rates of groundwater within the trench. The estimated dewatering rates are as follows:

- Near B101(MW): Approximately 45 to 82 gpd during a low water condition and approximately 486 to 770 gpd during a high groundwater condition.
- Near B102(MW): Approximately 104 to 187 gpd during a low groundwater condition and approximately 942 to 1466 gpd during a high groundwater condition.
- Near B103: Based on the soil encountered in B103(MW), we estimate the dewatering rates near B103(MW) will likely be between the estimated ranges for B101(MW) and B102(MW). The trench near B103(MW) may also be dry if construction takes place during low groundwater conditions similar August and September of 2017.

Our calculations are based on the limited geologic information observed during installation of B101(MW) and B102(MW). Actual dewatering rates may be higher or lower depending on site-specific and seasonal conditions.

Although, groundwater testing results did not exceed the AGQS for PFOA/PFOS, Eversource has elected to manage groundwater by one or a combination of the following methods:

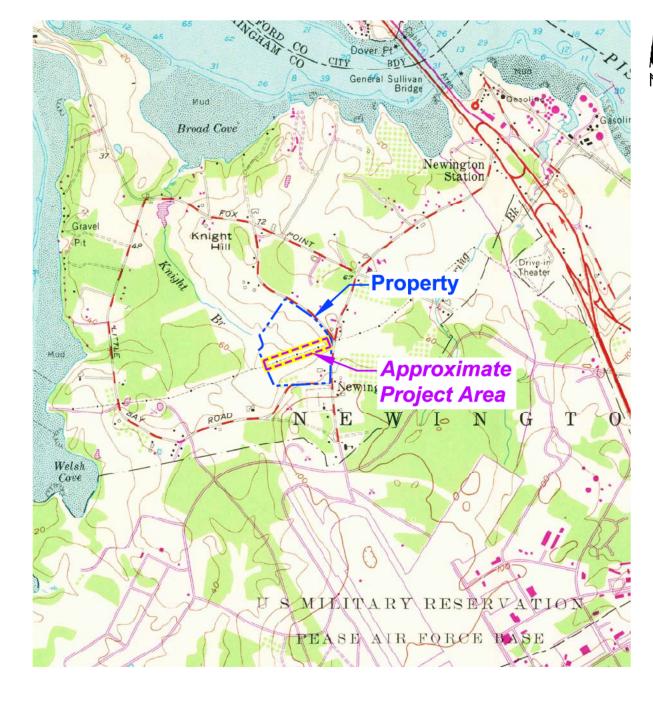
- Treatment and discharge to surface water: Groundwater generated as part of dewatering may be discharged to surface water under a NPDES Remediation General Permit (RGP). On-site surface water discharge will likely require use of a water treatment system, including equipment such as fractionation (frac) tanks and carbon units, to adequately treat the groundwater for contaminants before discharging into Knight's Brook Tributary. Additional water testing for NPDES RGP requirements as well as approval from USEPA and NHDES will be obtained prior to treatment and discharge of water.
- Offsite disposal of groundwater: Groundwater may be temporarily stored onsite in a frac tank and then pumped to a vacuum truck and transported offsite for disposal or directly pumped from the excavation with a vacuum truck and transported offsite for disposal. All receiving facilities must be pre-approved by Eversource. No excess effluent may be recharged or disposed of at an uncontrolled location
- Surface Water Pre-characterization and Classification: Surface water testing from September 2016 indicated that PFOA and PFOS were detected in sample SW1 from Knight's Brook tributary at 0.842 μg/L and 2.91 μg/L, respectively. The total PFOA/PFOS concertation was 3.752 μg/L. Both the individual and total concentrations exceed the NH AGQS of 0.07 μg/L.

We understand that Knight's Brook tributary will be diverted during construction in a manner that does not produce excess water or require additional water management, treatment, or offsite disposal. However, if excess water is generated, the contractor shall propose methods of treatment or disposal of the surface water for approval by Eversource.

Attachments:

Fig. 1 – Site Location Map

Fig. 2 – Project Area Plan


Fig. 3B – Temporary Stream Crossing Section & Details

Attachment A-1 – Gove Environmental Services Soil Management Plan

CRC/MWS/JRA:jam

B \Working\EVERSOURCE\1607530 - EVS-SRP NH\01_ADMIN\Soil and GW Mgtm Plan Frink rev 12_2017\A Soil and GW Management Plan\A - Soil and Water Management Plan rev 12_15_2017.docx

Figures

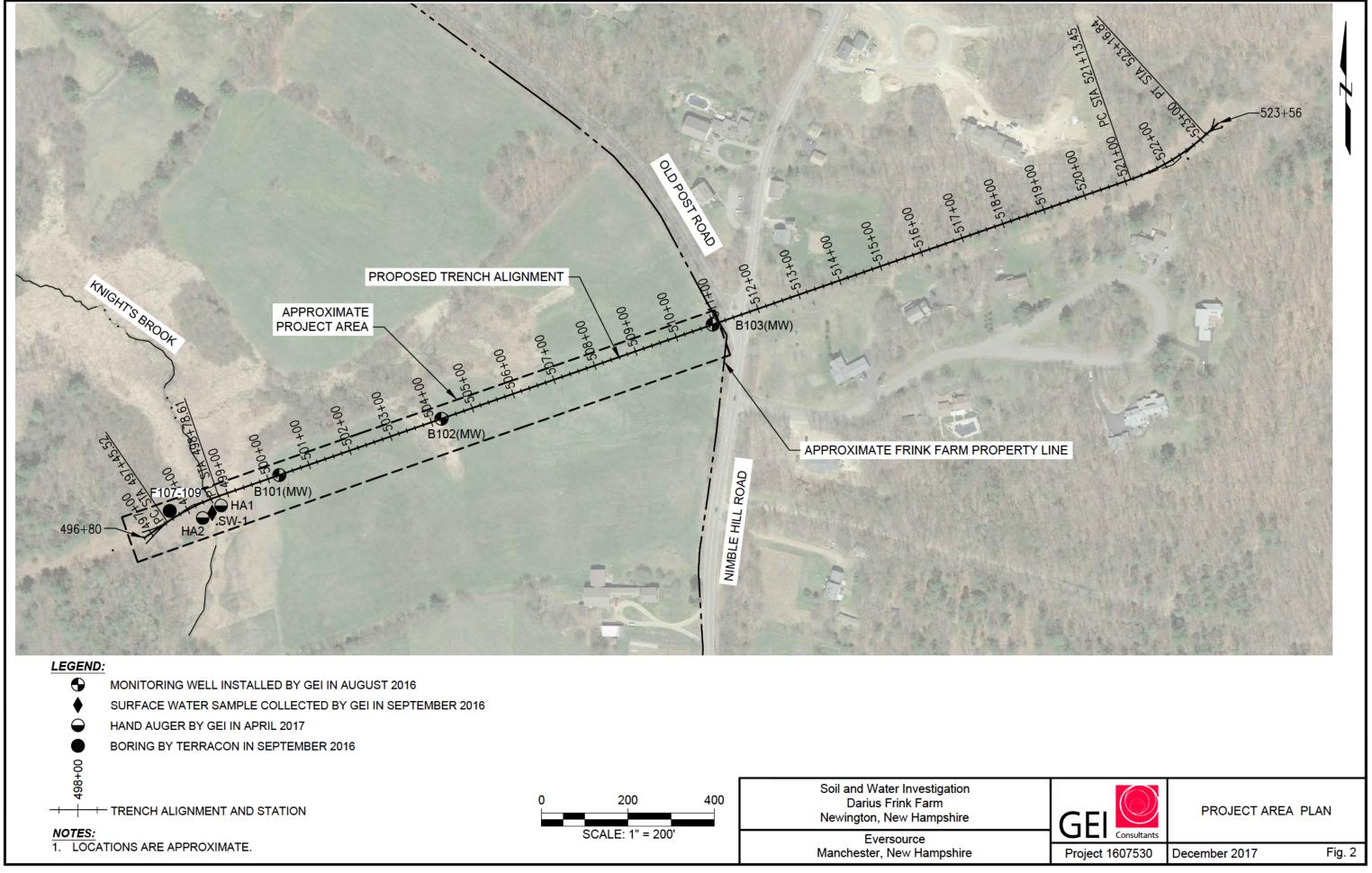
This Image from U.S.G.S. Topographic 7.5 Minute Series Portsmouth, NH - ME Quadrangle, 1981.

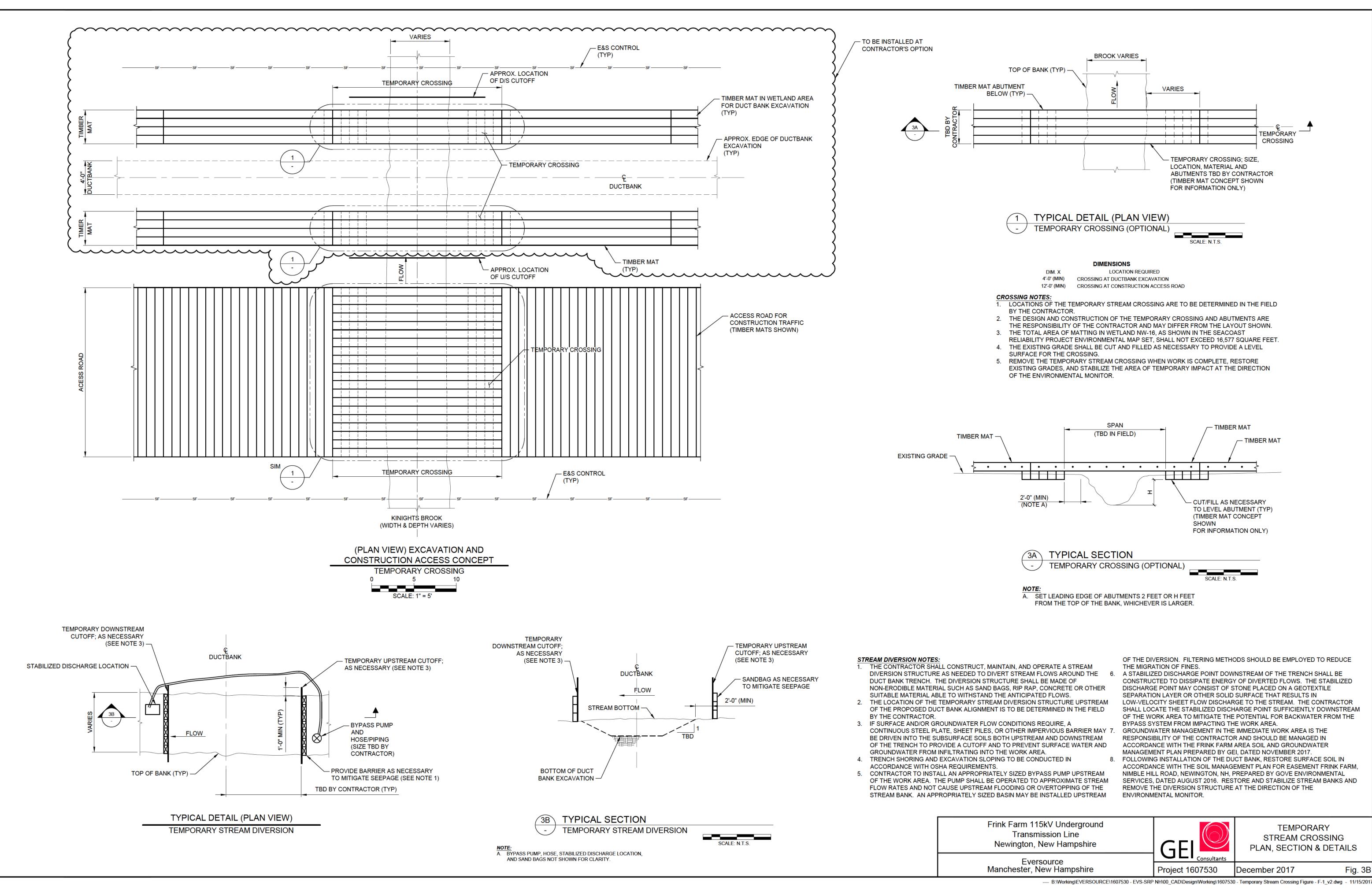
Datum is National Geodetic Vertical Datum of 1929 (NGVD29).

Contour Interval is 20 Feet.

QUADRANGLE LOCATION

Soil and Water Management Plan Darius Frink Farm Newington, New Hampshire


Eversource Energy Manchester, New Hampshire



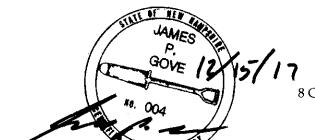
SITE LOCATION MAP

December 2017

Fig. 1

Attachment A-1

Gove Environmental Services Soil Management Plan



December 15, 2017

SOIL MANAGEMENT PLAN FOR EASEMENT FRINK FARM, NIMBLE HILL ROAD, NEWINGTON, NH

- 1- A meeting will be held with the contractor, prior to construction, to discuss handling of soil.
- 2- The concept is to segregate the topsoil (A horizon) from the subsoil (B horizon) from the substratum (C horizon). The natural soil profile is a topsoil over a subsoil over a substratum. The intent is to replicate the natural soil profile when the excavation in the field is to be restored.
- 3- A qualified person will be on site during the excavation of the line to identify the soil horizons for the contractor.
- 4- The contractor, during the course of the excavation, shall segregate the topsoil, segregate the subsoil and segregate the substratum such that they are individually stock piled and not intermixed.
- 5- At 25-foot intervals along the trench in the field, the depth of the topsoil, subsoil and substratum shall be recorded as a basis for replicating the soil profile during restoration.
- 6- After the transmission line duct bank is constructed, the substratum shall be placed in the trench and slightly compacted up to the depth of the bottom of the subsoil layer.
- 7- The subsoil shall be placed into the trench, over the substratum layer, up to the depth of the bottom of the topsoil layer. Care will be taken to remove any open voids, but shall not compact the subsoil layer.
- 8- The topsoil shall be placed over the subsoil, mounded 2 inches above the natural grade on either side of the trench to allow for natural settling. Care will be taken to remove any open voids, but shall not compact the topsoil layer. The surface will be disk harrowed to break up any clods or root balls.
- 9- The topsoil shall be seeded with a seed mix recommended by the Rockingham County Conservation District and mulched with straw.
- 10- All ground surface areas impacted construction activities shall be scarified to remove compaction, and shall be seeded and mulched as specified in 9.
- 11- Excess substratum/subsoil soil material shall be removed from the field. Excess topsoil shall be spread evenly in the easement area in the stock pile areas and seeded and mulched as noted in 9.
- 12 Monitor success of seeding and reseed as necessary.

Compiled by Jim Gove, President of Gove Environmental Services, Inc. GES Project Number 2015138

8 Continental Dr Bldg 2 Unit H, Exeter, NH 03833-7526 Ph (603) 778 0644 / Fax (603) 778 0654 www.gesinc.biz

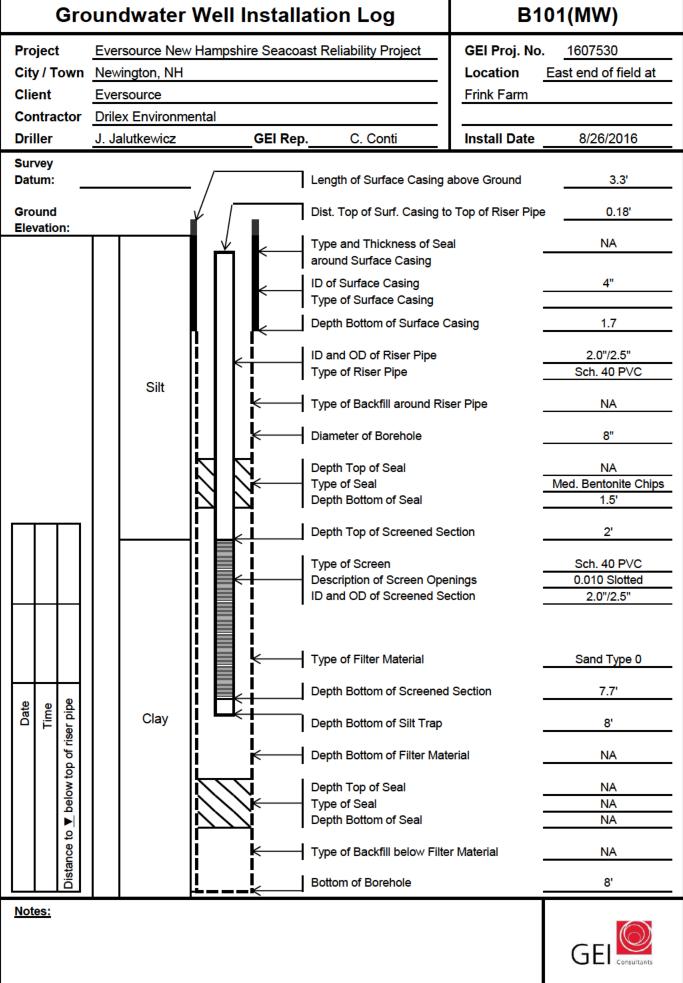
info@gesinc.biz

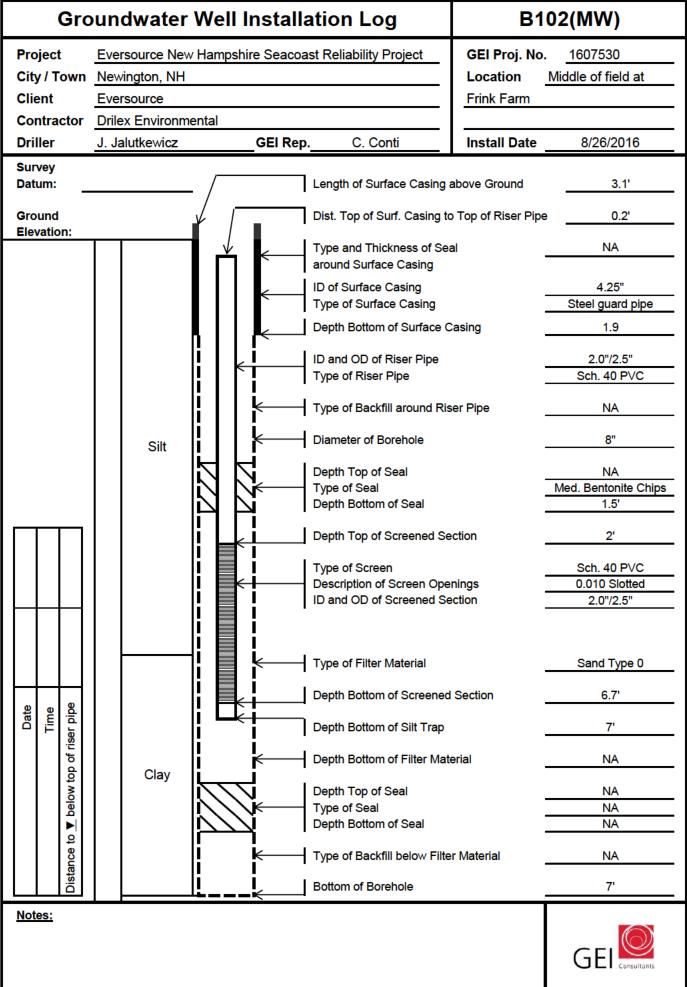
Appendix B	 		
Boring Logs			

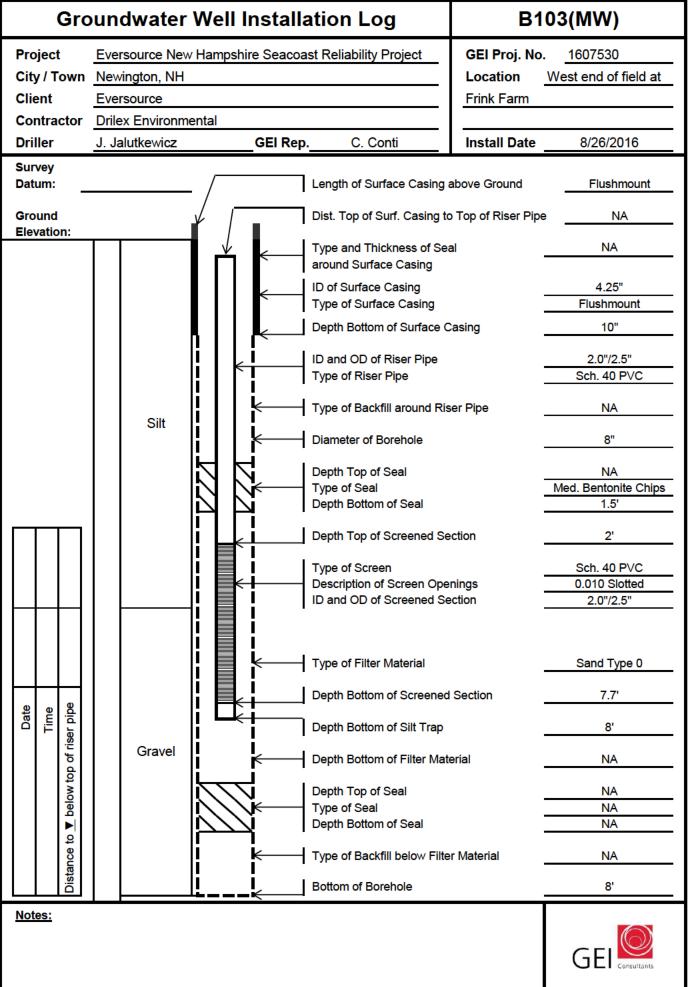
	BORING INFORMATION LOCATION: West end of field at Frink Farm										BORING				
				ACE EL. (1				DATE START/END:	8/26/20	16 - 8/26/2016					
-	VERTI	CAL D	ATL	JM: NA				DRILLING COMPANY:	Drile	x Environmental	B101				
-								DRILLER NAME: _ J .	Jalutke	Micz					
	LOGGI	ED BY	' : _	C Conti				RIG TYPE: CME 45	PAGE 1 of 1						
	намм	ER TY	PE:	RMATION Autom	atic						REL TYPE: NA				
-								DRILL ROD O.D.:		CORE BAR	REL I.D./O.D. NA / NA				
1		DRILLING METHOD: Hollow Stem Auger WATER LEVEL DEPTHS (ft): Not Encountered													
	WATE	(LEV	CL 1	DEPTHS (11): <u>NOL</u>	Encounter	eu								
	ABBREVIATIONS: Pen = Penetration Length Rec = Recovery Length RQD = Rock Quality Designation = Length o Sound Cores>4 in / Pen % WOR = Weight o Rods WOH = Weight o Hammer					Length ality Designa Sound Core Rods	tion s>4 in / Pen	S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stem Auger		Qp = Pocket Penetrometer Strength Sv = Pocket orvane Shear Strength LL = Liquid Limit P = Plasticity ndex P D = Photoionization Detector D /O D = nside Diameter/Outside Di	NA NM = Not Applicable Not Measured Blows per 6 in 140-lb hammer alling 30 inches to drive a 2-inch-O D split spoon sampler ameter				
Ì				Sa	amp e Inf	ormat on			e						
	E ev. (ft)	Dept (ft)		Samp e No.	Depth (ft)	Pen./ Rec. (n)	B ows per 6 n. or RQD	Dr ng Remarks/ F e d Test Data	Layer Name	So and	Rock Descr pt on				
		-		S1	0 to 2	24/18	3446	S1= 32.5 ppm	SLT	S1: SILT WITH SAND (ML); sand, gray, dry, roots.	~90% nonp ast c f nes, ~10% f en				
		_		S2	2 to 4	24/20	6655	S2= 7.0 ppm		S2: LEAN CLAY WITH SAN ~10% most y f ne sand, gray	D (CL); ~90% ow p ast c ty f nes, . Mo st n bottom 6 nches.				
		_	5	S3	4 to 6	24/21	1222	S3= 5.6 ppm	CLAY	S3: S m ar to S2. Wet start redd sh orange mott ng.	ng at ~4.5 to 5 feet. Some				
		-		S4	6 to 8	24/17	3321	S4= 4.6 ppm		redd sh orange.	brown, wet, some mott ng w th				
		_								Bottom of bor ng at ~8 feet.	nsta ed mon tor ng we .				
GD 8/29/16		- 1 -	0												
E 2011		-													
DA A EMPLA		-													
뜅		- 1 -	5												
NH SRP GPJ		<u>-</u>													
NAME EVS		- - 2	0												
ON-LAYER NAME		-													
D 1-LOCA C		- -													
GE WOBURNS	NOTES: Samples collected B101(S1-S2) composite and B101(S3-S4) composite						B101(S3-S4	l) composite	Reliate CITY/	ECT NAME: Eversource New Hillity Project STATE: Newington NH ROJECT NUMBER: 1607530	ampshire Seacoast GEI Consultants				

				IATION	d at Frield	F					BORING
	LOCATION: Middle of field at Frink Farm GROUND SURFACE EL. (ft): NM DATE START/END						DATE START/END:	8/26/20	016 - 8/26/2016	2012	
				M: NA				DRILLING COMPANY:			B102
	TOTAL	DEPT	H (f	t): 75				DRILLER NAME: J	Jalutke	wicz	
	LOGG	ED BY		C Conti				RIG TYPE: CME 45			PAGE 1 of 1
	DRILLI	DRILLING INFORMATION									
	намм	ER TY	PE:	Autom	atic			CASING I.D./O.D.: 4	25 incl	n/ 8 inch CORE BAF	RREL TYPE: NA
	AUGE	R I.D./C).D.:	NA/I	NA			DRILL ROD O.D.:		CORE BAF	RREL I.D./O.D. NA / NA
	WATER LEVEL DEPTHS (ft): Not Encountered						- 4				
	WATE	V LEVI	LU	EPINS (it): <u>NO</u>	Encounter	eu				
	ABBREVIATIONS: Pen = Penetration Length Rec = Recovery Length RQD = Rock Quality Designation = Length o Sound Cores>4 in / Pen % WOR = Weight o Rods WOH = Weight o Hammer					S = Split Spoon Sample C = Core Sample U = Undisturbed Sample SC = Sonic Core DP = Direct Push Sample HSA = Hollow-Stern Auger		Qp = Pocket Penetrometer Strength Sv = Pocket orvane Shear Strength LL = Liquid Limit P = Plasticity ndex P D = Photoionization Detector D /O D = nside Diameter/Outside D	NA NM = Not Applicable Not Measured Blows per 6 in 140-lb hammer alling 30 inches to drive a 2-inch-O D split spoon sampler iameter		
				Sa	amp e Inf	ormat on			ne		
	E ev. (ft)	Depti (ft)		Samp e No.	Depth (ft)	Pen./ Rec. (n)	B ows per 6 n. or RQD	Dr ng Remarks/ F e d Test Data	Layer Name	So and	Rock Description
		-		S1	0 to 2	24/14	3355	S1= 5.6 ppm	5	S1: SILT WITH SAND (ML) most y f ne sand, ght brown); ~85% nonp ast c f nes, ~15% n to gray, roots.
		-		S2	2 to 4	24/20	8 9 10 10	S2= 5.1 ppm	ıs	S2: SILT (ML); ~95% ow p	ast c ty f nes, ~5% f ne sand, gray.
		- - •	5	S3	4 to 6	24/19	2222	S3= 5.4 ppm	CLAY		ID (CL); ~85% ow p ast c ty f nes, wn gray. Wet at 5 feet w th 2" seam eas ng f ne sand w th depth.
		-		S4	6 to 6.8	9/9	18 55/3"	S4= 5.1 ppm Weathered rock n t p. Auger refusa at 7.5 feet.	ō	most y f ne sand, ght brown	
116		- - - 10								Bottom of bor ng @ 7.5 feet sh fted, bottom of screen at	. Insta ed mon tor ng we . Rock 7 feet.
EMPLA E 2011 GD 8/29/16		- - -									
SRP GPJ GE DA A		- 15 - -	5								
D 1-LOCA ON-LAYER NAME EVS NH		- - - 20 - -									
GE WOBURNS D 1-	NOTES: Samples collected B102(S1-S2) composite and B102 (S3-S4) composite						3102 (S3-S	4) composite	Reliate CITY/	JECT NAME: Eversource New Holility Project STATE: Newington NH PROJECT NUMBER: 1607530	lampshire Seacoast GEI Consultants

- 1	BORIN					field Frield	Farm					BORING			
						field Frink I			DATE START/END:	8/26/2	016 - 8/26/2016				
												B103			
	TOTAL	. DE	PTH	(ft)	: 80				DRILLER NAME: J			2.00			
									RIG TYPE: CME 45	PAGE 1 of 1					
ŀ	DDII I I	NG	INE) PM	MATION										
- 1										1 25 inc	h/ 8 inch CORE BA	RREL TYPE: NA			
												RREL I.D./O.D. NA / NA			
- 1						ollow Stem			_						
-	WATE	R LE	VEL	DE	PTHS (ft): Not	Encounter	ed							
ŀ	ABBRE	=\/I.A	TIO	NG.	Pen	= Penetration	on Length		S = Split Spoon Sample		Qp = Pocket Penetrometer Strength	NA NM = Not Applicable Not Measured			
-	ADDIN	- • • •		10.	Rec	= Recovery	Length		C = Core Sample		Sv = Pocket orvane Shear Strength				
-						= Length o		tion s>4 in / Pen			LL = Liquid Limit P = Plasticity ndex	30 inches to drive a 2-inch-O D			
-						R = Weight o			DP = Direct Push Sample HSA = Hollow-Stem Auger		P D = Photoionization Detector D /O D = nside Diameter/Outside I	split spoon sampler Diameter			
ŀ					Sa	amp e Inf	ormat on			Ф					
-	E ev.	De	nth						Dr ng Remarks/	Layer Name					
-	(ft)	(f			amp e		Pen./ Rec.	Bows per 6 n.	F e d Test Data	e V	So and	Rock Descr pt on			
-	. ,	`	•		No.	(ft)	(n)	or RQD		ay					
ŀ				Т	64	0	04440	0.5.0.5	S1= 0.3 ppm	+-	S1: SILT WITH SAND (MI); ~70% nonp ast c f nes, ~25%			
					S1	to 2	24/13	3588	- vie bkiii		most y f ne sand, ~5% grav	e to 3/4", ght brown, dry, some roots			
										5	n top 3".				
		-		+	S2	2	11/11	18 65/5"	S2= 0.5 ppm	Sr.	S2: S m ar to S1, no roots.				
-		L		+		to \ 2.9 /		10 00/0	_						
-									Cobb e from 3 4 feet.						
-		Γ			S3	4 to	24/13	18 19	S3= 0.6 ppm		S3: WIDELY GRADED GR	AVEL WITH SILT AND SAND parse grave, ~15% most y f ne sand,			
-		_	5			6		25 32			~10% nonp ast c f nes, brow				
-										GRAVEL					
-					S4			55 30	S4= 0.8 ppm	GR.	S4: WIDELY GRADED GR (GW GM): ~60% f ne to co	AVEL WITH SILT AND SAND arse grave , ~30% f ne to coarse			
-		-						80/7"			sand, ~10% nonp ast c f ne	s, brown to redd sh brown.			
-		F		+					Refusa on cobb e/		Bottom of bor ng at 8 feet.	nsta ed mon tor na we			
-		L							weathered rock. Augrered		Dottom of Bornig at o root.	note of montoring we .			
16									to 8 feet.						
8/29/16			10												
GD GD		L													
E 2011															
		F													
EMPLA		L													
۷ ۲															
E DA			15												
S GE		F													
SRP GPJ															
N N		F													
EVS		L													
ON-LAYER NAME			00												
ER			20												
Ϋ́		F													
SCA															
D 1-LOCA		-													
SURN	NOTES Sample		llect	ed I	B103(S1	1-S2) comr	oosite and I	B103 (S3-S	4) composite		JECT NAME: Eversource New I bility Project	Hampshire Seacoast			
WOBURNS	pio	_ 50		1	. 35(0	,	. selve und l	(50 0	.,	Reliability Project CITY/STATE: Newington NH					
핑										GEI PROJECT NUMBER: 1607530					




				ATION								BORING
	LOCATION: East side of tributary GROUND SURFACE EL. (ft): NM DATE START/END:							DΔ	TE START/END: 4	/7/20	17 - 4/7/2017	Doranto
				M: NM				_	ILLING COMPANY:			HA1
TOTA	AL [DEPTH	l (ft): 65	1			_	ILLER NAME: M			
LOGO	GEI	D BY:		M Green				RIC	Hand Auge	r		PAGE 1 of 1
DRII	PRILLING INFORMATION											
				NA				CA	SING I.D./O.D.: N	\ / NA	CORE BAF	RREL TYPE: NA
AUG	AUGER I.D./O.D.: 2 5 inch / 2 6 inch							DR				RREL I.D./O.D. NA / NA
I				OD: A	_							
WAT	ER	LEVE	LD	EPTHS ((ft): No	t measured						
ABBF	REV	/IATIO	NS		= Penetrat				Split Spoon Sample		Qp = Pocket Penetrometer Strength	NA NM = Not Applicable Not Measured
				ROD	= Recovery = Rock Qu	ality Design	ation	U=	Core Sample Undisturbed Sample		Sv = Pocket orvane Shear Strength LL = Liquid Limit	Blows per 6 in 140-lb hammer alling 30 inches to drive a 2-inch-O D
				WOF	= Length o R = Weight	Sound Core o Rods	es>4 in / Pen %		= Sonic Core = Direct Push Sample		P = Plasticity ndex P D = Photoionization Detector	split spoon sampler
	_					o Hammer			A = Hollow-Stem Auger		D /O D = nside Diameter/Outside	Diameter
				S	amp e Int	format on				Name		
E ev.	. [Depth		Samp e	Depth	Pen./	Bows	Dr	ng Remarks/ e d Test Data	Ra	So and	Rock Description
(ft)		(ft)	"	No.	(ft)	Rec.	per 6 n. or RQD	-	e d Test Data	Layer		•
	\perp					(11)	OI RQD			ت	04 (0 41) 070 1410 0011 (6	
										7	S1 (0 1'): ORGANIC SOIL (0 f ne sand, dark brown, roots	DL); ~85% ow p ast c ty f nes, ~15% n top 6 nches, wet.
			1	S1	1 to	12/12				Ĺ	1	
	\vdash		t	S2	2 2	12/12				M	S2 (1 1.5'): S mm ar to S1(0	1'), no roots.); ~70% ow p ast c ty f nes, ~30% f ne
	ŀ		ł	S3	to 3	12/12					sand, gray, wet.	.); ~70% ow pastc ty rnes, ~30% rne
	ŀ		t	S4	3 to 4	12/12				>	S3: Same as above.	med um p ast c fnes, ~5% fne sand,
	F	- 5	ł	S5	4 to	12/12				CLAY	gray, wet.	med um p ast offies, 570 file sand,
	ŀ		ł		5						S5: S mm ar to S4, mott ed o	orange, some roots.
	ŀ		1	S6 S7	to 6	12/12 6/6					S6: S mm ar to S4, mott ed o	orange, some roots.
	L				to 7						S7: S mm ar to S4, mott ed	
					6.5						Bottom of bor ng at about 6.5	feet. Backf ed wth cutt ngs.
	r				to 7							
	H	- 10										
	F											
	Γ											
	H											
	F											
117		- 15										
6/21/17		10										
EVS NH SRP GPJ	F											
SRP	ŀ											
Ŧ	L											
S												
	r											
N NA	\vdash	- 20										
AYE	L											
ON-LAYER NAME												
D 1-LOCA	+											
	ES:									PRO.	JECT NAME: Eversource New	Hampshire
OBUF											oast Reliability Project	
GE WOBURN S											STATE: Newington NH PROJECT NUMBER: 1607530	GEL


				ATION							BORING
- 1		_			f tributary			DATE START/END: 4	/7/20	17 - 4/7/2017	Bortinto
- 1				M: NM				DRILLING COMPANY:			HA2
TOT	'AL	DEPT	H (fi	60				DRILLER NAME: M	Greer	J Wolpert	
LOG	GE	D BY:		M Greer				RIG TYPE: Hand Auge	r	PAGE 1 of 1	
DDII	PRILLING INFORMATION										
				NA NA				CASING I.D./O.D.: NA	A / NA	CORE BAI	RREL TYPE: NA
	UGER I.D./O.D.: 2 5 inch / 2 6 inch					nch		DRILL ROD O.D.: NM		RREL I.D./O.D. NA / NA	
DRIL	LLIN	NG ME	TH	OD: A	uger						
WAT	TER	LEVE	LD	EPTHS ((ft): No	t measured	l				
ABB	RE\	VIATIO	ONS	: Pen	= Penetrat	ion Length		S = Split Spoon Sample		Qp = Pocket Penetrometer Strength	NA NM = Not Applicable Not Measured
				Rec	= Recovery		ation	C = Core Sample U = Undisturbed Sample		Sv = Pocket orvane Shear Strength LL = Liquid Limit	Blows per 6 in 140-lb hammer alling
						Sound Core	es>4 in / Pen %			P = Plasticity ndex P D = Photoionization Detector	30 inches to drive a 2-inch-O D split spoon sampler
						o Hammer		HSA = Hollow-Stem Auger		D /O D = nside Diameter/Outside	
				s	amp e Inf	format on			Je L		
Eev	v.	Depth				Pen./	Bows	Dr ng Remarks/	Name	So and	Rock Description
(ft))	(ft)	1	Samp e No.	Depth (ft)	Rec.	per 6 n.	F e d Test Data	Layer	So and	Rock Description
				140.	(11)	(n)	or RQD		La		
									7	S1(0 0.5'): ORGANIC SOIL	OL); ~85% ow p ast c ty f nes, ~15%
	+	•		S1	1	12/12			_	f ne sand, dark brown, roots, S1(0.5 1'): SANDY SILT (ML	wet. .); ~80% ow p ast c ty fnes, ~20% fne
	-		H	51	to	12/12			OY S	sand, no roots, organe mott	
			1	S2	2 2 to	12/12			SANDY	S2: same as S1(0.5 1').	
		-	ı	S3	3	12/12				S3: same as S1(0.5 1').	
	ŀ	-	H	C4	to	40/40			SAND	S4(3 3.5'): same as S1(0.5 1	
	ļ	- 5	4	S4	4	12/12				000/	ADED SAND WITH SILT (SP SM); , ~20% ow p ast c ty f nes, gray, wet.
			þ	S5	to 5	12/12			CLAY	S5: s mm ar to S4(3.5 4').	
	Ī	•	ı	S6	5 to	12/12				1	med um p ast c f nes, ~5% f ne sand,
	+	-	▮		6					gray, mott ed, wet.	-
	L	-			to 7					Bottom of bor ng at about 6 f	eet. Backr ed with cuttings.
	t	-									
	+	- 10									
	L	-									
	t	-									
	-	-									
	L										
_											
6/21/17	ŀ	– 15									
2	-	-									
<u>ق</u>											
EVS NH SRP GPJ											
S	\vdash										
	-										
AME		00									
ON-LAYER NAME		– 2 0									
ΓĄ	+	•									
	-										
SCA											
D 1-LOCA		-									
	FS:							I	PRO	JECT NAME: Eversource New	Hampshire
GE WOBURN S	_0.	,							Seac	oast Reliability Project	(A)
WOE									CITY	/STATE: Newington NH	C FI
GE									GEI F	PROJECT NUMBER: 1607530	Consultants

	BORING LOG NO. F107-109 Page 1 of 2									
PF	OJECT: Seacoast Reliability Project		CLIENT: Evers	ource	Ene	rgy				
SI	ΓΕ: Portsmouth, Newington, Durham, and Madbury, New Ha	mpshire								
GRAPH C LOG	LOCATION See Exhibit A-2 Latitude 43 10076522° Longitude -70 83778978° DEPTH	Su	fface Elev 43 284 (Ft) ELEVAT ON (Ft)	DEPTH (R.)	WATER LEVEL OBSERVAT ONS	SAMPLE TYPE RECOVERY (n)	F ELD TEST RESULTS		RQD (%)	Core Rate (min/ft)
1/ 1/1/	3 nches of forest oam, roots			_		12	4 7 11 N=18			
	SILTY SAND (SM), ght brown to white, descripts	cated, med um dens	41 5 e 40	_		16	798	8		
	SILT WITH SAND (ML), o ve brown, des ccate	ed	70	5 — -	{	24	N=1	8		
	9 0 LEAN CLAY (CL) , gray, very soft		34 5	10_		24	woh 1 1 N=2			
				- - 15		X 24	wor/1:			
				- -			woh/1	2"		
				20-		24	wor/1 woh/1			
	24 0 25 0 SILTY SAND (SM), wth fractured grave, brow	n, very dense, (GLA	19 5 ACIAL 18 5	25		18	18 18 3: N=50			
	Roerbt to 29 feet 29 0 Run 1		14 5	- - -						
	Hard, s ght y weathered, gray, aphan t c PHY c ose jo nts EXETER DIORITE FORMATION	LLITE, moderate y o	I pp ng,	30- - - -		49			25	
	Run 2 S m ar Note: Numerous mechan ca breaks due to ja	mm ng ns de the ba	urre	35		41			13	
	Stratification lines are approximate n-situ the transition may	y be gradual		Hamn	ner Type	e Auton	matic			<u> </u>
3-ii	Advancement Method 3-inch casing See Exhibit A-3 for description of field procedures See Appendix B for description of laboratory procedures and additional data (if any) Abandonment Method Boring backfilled with soil cuttings upon completion See Appendix C for explanation of symbols a abbreviations									
	WATER LEVEL OBSERVATIONS No free water cheanved					8/26/201	16 Bori	ing Compl	eted 8/26/	2016
	No free water observed				Drill Rig Diedrich D-50 turbo Driller Drilex					
:	77 Sundial Ave Ste 401W Manchester NH				Project No J1165081 Exhibit A-31					

	BORING LOG NO. F107-109										Page 2 of	f 2
	PR	OJECT:	Seacoast Reliability Project		CLIENT: Evers	ourc	e En	erg	у			
	SIT	E:	Portsmouth, Newington, Durham, and Madbury, New H	lampshire	_							
	GRAPH C LOG	Latitude 43	N See Exhibit A-2 3 10076522° Longitude -70 83778978°		urface Elev 43 284 (Ft)	DEPTH (R.)	WATER LEVEL OBSERVAT ONS	SAMPLE TYPE	RECOVERY (n)	F ELD TEST RESULTS	ROD (%)	Core Rate (min/ft)
١		DEPTH 39 0			ELEVAT ON (Ft) 4 5			П	41			
VAL D. F.SEPARA. ED FROM OR GINAL REPOR GEO SMAR. LOG-NO WELL. J1165081 GPJ		cement Meti	on lines are approximate n-situ the transition n		cription of field	Ham	mer Ty	pe /	Automa	atic		
H S BOR NG LOG S NO VAL D F S	3-ind	ch casing		See Exhibit A-3 for des procedures See Appendix B for des procedures and additio See Appendix C for exp abbreviations	scription of laboratory	Notes	1					
1G LOG			ER LEVEL OBSERVATIONS	75		Boring Started 8/26/2016 Boring C				ompleted 8/26/2016		
BORN	No free water observed		llerr	acon	Drill Rig Diedrich D-50 turbo Driller Drilex							
HSI	777 S				Indial Ave Ste 401W Manchester NH Project No J1165081 Exhibit A-31					A-31		

Laboratory Data	Reports		

ANALYTICAL REPORT

Lab Number: L1627010

Client: GEI Consultants

400 Unicorn Park Drive Woburn, MA 01801

ATTN: Mike Sabulis
Phone: (781) 721-4114

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 Report Date: 09/15/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010 **Report Date:** 09/15/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1627010-01	1607530-B103(S1-S2)	SOIL	NEWINGTON, NH	08/26/16 09:25	08/29/16
L1627010-02	1607530-B103(S3-S4)	SOIL	NEWINGTON, NH	08/26/16 09:55	08/29/16
L1627010-03	1607530-B102(S1-S2)	SOIL	NEWINGTON, NH	08/26/16 10:45	08/29/16
L1627010-04	1607530-B102(S3-S4)	SOIL	NEWINGTON, NH	08/26/16 11:00	08/29/16
L1627010-05	1607530-B101(S1-S2)	SOIL	NEWINGTON, NH	08/26/16 11:45	08/29/16
L1627010-06	1607530-B101(S3-S4)	SOIL	NEWINGTON, NH	08/26/16 12:00	08/29/16

L1627010

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 Report Date: 09/15/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services a	at 800-6	524-9220	with a	any q	uestions.

Project Name:EVERSOURCE NH SRPLab Number:L1627010Project Number:1607530Report Date:09/15/16

Case Narrative (continued)

Report Submission

This final report replaces the partial report issued September 6, 2016 and includes the results of all requested analyses.

The analyses of PFOA and PFOS by Method 537 were subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sew Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 09/15/16

ORGANICS

VOLATILES

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number: L1627010

Report Date: 09/15/16

Lab ID: L1627010-01

Client ID: 1607530-B103(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/05/16 12:20

Analyst: ΒN 93% Percent Solids:

Date Collected:	08/26/16 09:25
Date Received:	08/29/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 H	igh - Westborough Lab					
Methylene chloride	ND		ug/kg	610		1
1,1-Dichloroethane	ND		ug/kg	92		1
Chloroform	ND		ug/kg	92		1
Carbon tetrachloride	ND		ug/kg	61		1
1,2-Dichloropropane	ND		ug/kg	210		1
Dibromochloromethane	ND		ug/kg	61		1
1,1,2-Trichloroethane	ND		ug/kg	92		1
Tetrachloroethene	ND		ug/kg	61		1
Chlorobenzene	ND		ug/kg	61		1
Trichlorofluoromethane	ND		ug/kg	300		1
1,2-Dichloroethane	ND		ug/kg	61		1
1,1,1-Trichloroethane	ND		ug/kg	61		1
Bromodichloromethane	ND		ug/kg	61		1
trans-1,3-Dichloropropene	ND		ug/kg	61		1
cis-1,3-Dichloropropene	ND		ug/kg	61		1
1,3-Dichloropropene, Total	ND		ug/kg	61		1
1,1-Dichloropropene	ND		ug/kg	300		1
Bromoform	ND		ug/kg	240		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	61		1
Benzene	ND		ug/kg	61		1
Toluene	ND		ug/kg	92		1
Ethylbenzene	ND		ug/kg	61		1
Chloromethane	ND		ug/kg	300		1
Bromomethane	ND		ug/kg	120		1
Vinyl chloride	ND		ug/kg	120		1
Chloroethane	ND		ug/kg	120		1
1,1-Dichloroethene	ND		ug/kg	61		1
trans-1,2-Dichloroethene	ND		ug/kg	92		1
Trichloroethene	ND		ug/kg	61		1
1,2-Dichlorobenzene	ND		ug/kg	300		1

L1627010

Project Name: EVERSOURCE NH SRP Lab Number:

Project Number: Report Date: 1607530 09/15/16

SAMPLE RESULTS

Lab ID: L1627010-01 Date Collected: 08/26/16 09:25

1607530-B103(S1-S2) Client ID: Date Received: 08/29/16 Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 H	igh - Westborough Lab					
1,3-Dichlorobenzene	ND		/	300		1
1,4-Dichlorobenzene	ND		ug/kg	300		1
	ND		ug/kg			
Methyl tert butyl ether	ND ND		ug/kg	120		1
p/m-Xylene o-Xylene	ND		ug/kg	120		1
Xylenes, Total	ND		ug/kg	120		1
cis-1,2-Dichloroethene	ND		ug/kg	61		1
1,2-Dichloroethene, Total	ND ND		ug/kg	61		1
Dibromomethane	ND		ug/kg			1
	ND ND		ug/kg	610		
1,4-Dichlorobutane			ug/kg	610		1
1,2,3-Trichloropropane	ND		ug/kg	610		1
Styrene	ND		ug/kg	120		1
Dichlorodifluoromethane	ND		ug/kg	610		1
Acetone	ND		ug/kg	2200		1
Carbon disulfide	ND		ug/kg	610		1
2-Butanone	ND		ug/kg	610		1
Vinyl acetate	ND		ug/kg	610		1
4-Methyl-2-pentanone	ND		ug/kg	610		1
2-Hexanone	ND		ug/kg	610		1
Ethyl methacrylate	ND		ug/kg	610		1
Acrylonitrile	ND		ug/kg	240		1
Bromochloromethane	ND		ug/kg	300		1
Tetrahydrofuran	ND		ug/kg	1200		1
2,2-Dichloropropane	ND		ug/kg	300		1
1,2-Dibromoethane	ND		ug/kg	240		1
1,3-Dichloropropane	ND		ug/kg	300		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	61		1
Bromobenzene	ND		ug/kg	300		1
n-Butylbenzene	ND		ug/kg	61		1
sec-Butylbenzene	ND		ug/kg	61		1
tert-Butylbenzene	ND		ug/kg	300		1
o-Chlorotoluene	ND		ug/kg	300		1
p-Chlorotoluene	ND		ug/kg	300		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	300		1
Hexachlorobutadiene	ND		ug/kg	300		1
Isopropylbenzene	ND		ug/kg	61		1
p-Isopropyltoluene	ND		ug/kg	61		1
Naphthalene	ND		ug/kg	300		1
n-Propylbenzene	ND		ug/kg	61		1

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: L1627010-01 Date Collected: 08/26/16 09:25

Client ID: 1607530-B103(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High - West	borough Lab)					
1,2,3-Trichlorobenzene	ND		ug/kg	300		1	
1,2,4-Trichlorobenzene	ND		ug/kg	300		1	
1,3,5-Trimethylbenzene	ND		ug/kg	300		1	
1,2,4-Trimethylbenzene	ND		ug/kg	300		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	300		1	
Ethyl ether	ND		ug/kg	300		1	

Suma mata	0/ D anassams	Overlities.	Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	94		70-130	

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number: L1627010

Report Date: 09/15/16

Lab ID: L1627010-02

Client ID: 1607530-B103(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/05/16 12:47

Analyst: ΒN 92% Percent Solids:

Date Collected:	08/26/16 09:55
Date Received:	08/29/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 H	ligh - Westborough Lab					
Methylene chloride	ND		ug/kg	520		1
1,1-Dichloroethane	ND		ug/kg	77		1
Chloroform	ND		ug/kg	77		1
Carbon tetrachloride	ND		ug/kg	52		1
1,2-Dichloropropane	ND		ug/kg	180		1
Dibromochloromethane	ND		ug/kg	52		1
1,1,2-Trichloroethane	ND		ug/kg	77		1
Tetrachloroethene	ND		ug/kg	52		1
Chlorobenzene	ND		ug/kg	52		1
Trichlorofluoromethane	ND		ug/kg	260		1
1,2-Dichloroethane	ND		ug/kg	52		1
1,1,1-Trichloroethane	ND		ug/kg	52		1
Bromodichloromethane	ND		ug/kg	52		1
trans-1,3-Dichloropropene	ND		ug/kg	52		1
cis-1,3-Dichloropropene	ND		ug/kg	52		1
1,3-Dichloropropene, Total	ND		ug/kg	52		1
1,1-Dichloropropene	ND		ug/kg	260		1
Bromoform	ND		ug/kg	210		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	52		1
Benzene	ND		ug/kg	52		1
Toluene	ND		ug/kg	77		1
Ethylbenzene	ND		ug/kg	52		1
Chloromethane	ND		ug/kg	260		1
Bromomethane	ND		ug/kg	100		1
Vinyl chloride	ND		ug/kg	100		1
Chloroethane	ND		ug/kg	100		1
1,1-Dichloroethene	ND		ug/kg	52		1
trans-1,2-Dichloroethene	ND		ug/kg	77		1
Trichloroethene	ND		ug/kg	52		1
1,2-Dichlorobenzene	ND		ug/kg	260		1

09/15/16

Project Name: EVERSOURCE NH SRP

Lab Number: L1627010

Report Date:

Project Number: 1607530

Lab ID:

SAMPLE RESULTS

Date Collected: 08/26/16 09:55

1607530-B103(S3-S4)

L1627010-02

Date Received: 08/29/16 Not Specified

Client ID: Sample Location: NEWINGTON, NH Field Prep:

Campio Eccationi 11E (11110 1 City)	•••			1 1014 1 10	γ.	rtot opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High -	Westborough Lab)					
1,3-Dichlorobenzene	ND		ug/kg	260		1	
1,4-Dichlorobenzene	ND		ug/kg	260		1	
Methyl tert butyl ether	ND		ug/kg	100		1	
p/m-Xylene	ND		ug/kg	100		1	
o-Xylene	ND		ug/kg	100		1	
Xylenes, Total	ND		ug/kg	100		1	
cis-1,2-Dichloroethene	ND		ug/kg	52		1	
1,2-Dichloroethene, Total	ND		ug/kg	52		1	
Dibromomethane	ND		ug/kg	520		1	
1,4-Dichlorobutane	ND		ug/kg	520		1	
1,2,3-Trichloropropane	ND		ug/kg	520		1	
Styrene	ND		ug/kg	100		1	
Dichlorodifluoromethane	ND		ug/kg	520		1	
Acetone	ND		ug/kg	1800		1	
Carbon disulfide	ND		ug/kg	520		1	
2-Butanone	ND		ug/kg	520		1	
Vinyl acetate	ND		ug/kg	520		1	
4-Methyl-2-pentanone	ND		ug/kg	520		1	
2-Hexanone	ND		ug/kg	520		1	
Ethyl methacrylate	ND		ug/kg	520		1	
Acrylonitrile	ND		ug/kg	210		1	
Bromochloromethane	ND		ug/kg	260		1	
Tetrahydrofuran	ND		ug/kg	1000		1	
2,2-Dichloropropane	ND		ug/kg	260		1	
1,2-Dibromoethane	ND		ug/kg	210		1	
1,3-Dichloropropane	ND		ug/kg	260		1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	52		1	
Bromobenzene	ND		ug/kg	260		1	
n-Butylbenzene	ND		ug/kg	52		1	
sec-Butylbenzene	ND		ug/kg	52		1	
tert-Butylbenzene	ND		ug/kg	260		1	
o-Chlorotoluene	ND		ug/kg	260		1	
p-Chlorotoluene	ND		ug/kg	260		1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	260		1	
Hexachlorobutadiene	ND		ug/kg	260		1	
Isopropylbenzene	ND		ug/kg	52		1	
p-Isopropyltoluene	ND		ug/kg	52		1	
Naphthalene	ND		ug/kg	260		1	
n-Propylbenzene	ND		ug/kg	52		1	

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 09:55

Client ID: 1607530-B103(S3-S4) Date Received: 08/29/16 Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High -	Westborough Lab)					
1,2,3-Trichlorobenzene	ND		ug/kg	260		1	
1,2,4-Trichlorobenzene	ND		ug/kg	260		1	
1,3,5-Trimethylbenzene	ND		ug/kg	260		1	
1,2,4-Trimethylbenzene	ND		ug/kg	260		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	260		1	
Ethyl ether	ND		ug/kg	260		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	94		70-130	

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number: L1627010

Report Date: 09/15/16

Lab ID: L1627010-03

Client ID: 1607530-B102(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/05/16 13:13

Analyst: ΒN 84% Percent Solids:

Date Collected: 08/26/16 10:45

Date Received: 08/29/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hi	gh - Westborough Lab					
Methylene chloride	ND		ug/kg	650		1
1,1-Dichloroethane	ND		ug/kg	97		1
Chloroform	ND		ug/kg	97		1
Carbon tetrachloride	ND		ug/kg	65		1
1,2-Dichloropropane	ND		ug/kg	230		1
Dibromochloromethane	ND		ug/kg	65		1
1,1,2-Trichloroethane	ND		ug/kg	97		1
Tetrachloroethene	ND		ug/kg	65		1
Chlorobenzene	ND		ug/kg	65		1
Trichlorofluoromethane	ND		ug/kg	320		1
1,2-Dichloroethane	ND		ug/kg	65		1
1,1,1-Trichloroethane	ND		ug/kg	65		1
Bromodichloromethane	ND		ug/kg	65		1
trans-1,3-Dichloropropene	ND		ug/kg	65		1
cis-1,3-Dichloropropene	ND		ug/kg	65		1
1,3-Dichloropropene, Total	ND		ug/kg	65		1
1,1-Dichloropropene	ND		ug/kg	320		1
Bromoform	ND		ug/kg	260		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	65		1
Benzene	ND		ug/kg	65		1
Toluene	ND		ug/kg	97		1
Ethylbenzene	ND		ug/kg	65		1
Chloromethane	ND		ug/kg	320		1
Bromomethane	ND		ug/kg	130		1
Vinyl chloride	ND		ug/kg	130		1
Chloroethane	ND		ug/kg	130		1
1,1-Dichloroethene	ND		ug/kg	65		1
trans-1,2-Dichloroethene	ND		ug/kg	97		1
Trichloroethene	ND		ug/kg	65		1
1,2-Dichlorobenzene	ND		ug/kg	320		1

L1627010

Project Name: EVERSOURCE NH SRP Lab Number:

Project Number: Report Date: 1607530 09/15/16

SAMPLE RESULTS

Date Collected:

Lab ID: L1627010-03 08/26/16 10:45 1607530-B102(S1-S2) Client ID: Date Received: 08/29/16

Sample Location: NEWINGTON, NH Field Prep: Not Specified

campio zocationii - 11211111010				1 1014 1 10	γ.	rtot opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Hi	gh - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	320		1	
1,4-Dichlorobenzene	ND		ug/kg	320		1	
Methyl tert butyl ether	ND		ug/kg	130		1	
p/m-Xylene	ND		ug/kg	130		1	
o-Xylene	ND		ug/kg	130		1	
Xylenes, Total	ND		ug/kg	130		1	
cis-1,2-Dichloroethene	ND		ug/kg	65		1	
1,2-Dichloroethene, Total	ND		ug/kg	65		1	
Dibromomethane	ND		ug/kg	650		1	
1,4-Dichlorobutane	ND		ug/kg	650		1	
1,2,3-Trichloropropane	ND		ug/kg	650		1	
Styrene	ND		ug/kg	130		1	
Dichlorodifluoromethane	ND		ug/kg	650		1	
Acetone	ND		ug/kg	2300		1	
Carbon disulfide	ND		ug/kg	650		1	
2-Butanone	ND		ug/kg	650		1	
Vinyl acetate	ND		ug/kg	650		1	
4-Methyl-2-pentanone	ND		ug/kg	650		1	
2-Hexanone	ND		ug/kg	650		1	
Ethyl methacrylate	ND		ug/kg	650		1	
Acrylonitrile	ND		ug/kg	260		1	
Bromochloromethane	ND		ug/kg	320		1	
Tetrahydrofuran	ND		ug/kg	1300		1	
2,2-Dichloropropane	ND		ug/kg	320		1	
1,2-Dibromoethane	ND		ug/kg	260		1	
1,3-Dichloropropane	ND		ug/kg	320		1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	65		1	
Bromobenzene	ND		ug/kg	320		1	
n-Butylbenzene	ND		ug/kg	65		1	
sec-Butylbenzene	ND		ug/kg	65		1	
tert-Butylbenzene	ND		ug/kg	320		1	
o-Chlorotoluene	ND		ug/kg	320		1	
p-Chlorotoluene	ND		ug/kg	320		1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	320		1	
Hexachlorobutadiene	ND		ug/kg	320		1	
Isopropylbenzene	ND		ug/kg	65		1	
p-Isopropyltoluene	ND		ug/kg	65		1	
Naphthalene	ND		ug/kg	320		1	
n-Propylbenzene	ND		ug/kg	65		1	

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 10:45

Client ID: 1607530-B102(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High -	Westborough Lab)					
1,2,3-Trichlorobenzene	ND		ug/kg	320		1	
1,2,4-Trichlorobenzene	ND		ug/kg	320		1	
1,3,5-Trimethylbenzene	ND		ug/kg	320		1	
1,2,4-Trimethylbenzene	ND		ug/kg	320		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	320		1	
Ethyl ether	ND		ug/kg	320		1	

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	96	70-130				
Toluene-d8	101		70-130			
4-Bromofluorobenzene	98		70-130			
Dibromofluoromethane	94		70-130			

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number: L1627010

Report Date: 09/15/16

Lab ID: L1627010-04

Client ID: 1607530-B102(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/05/16 13:40

Analyst: ΒN 79% Percent Solids:

Date Collected:	08/26/16 11:00
Date Received:	08/29/16
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	n - Westborough Lat)				
Methylene chloride	ND		ug/kg	480		1
1,1-Dichloroethane	ND		ug/kg	73		1
Chloroform	ND		ug/kg	73		1
Carbon tetrachloride	ND		ug/kg	48		1
1,2-Dichloropropane	ND		ug/kg	170		1
Dibromochloromethane	ND		ug/kg	48		1
1,1,2-Trichloroethane	ND		ug/kg	73		1
Tetrachloroethene	ND		ug/kg	48		1
Chlorobenzene	ND		ug/kg	48		1
Trichlorofluoromethane	ND		ug/kg	240		1
1,2-Dichloroethane	ND		ug/kg	48		1
1,1,1-Trichloroethane	ND		ug/kg	48		1
Bromodichloromethane	ND		ug/kg	48		1
trans-1,3-Dichloropropene	ND		ug/kg	48		1
cis-1,3-Dichloropropene	ND		ug/kg	48		1
1,3-Dichloropropene, Total	ND		ug/kg	48		1
1,1-Dichloropropene	ND		ug/kg	240		1
Bromoform	ND		ug/kg	190		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	48		1
Benzene	ND		ug/kg	48		1
Toluene	ND		ug/kg	73		1
Ethylbenzene	ND		ug/kg	48		1
Chloromethane	ND		ug/kg	240		1
Bromomethane	ND		ug/kg	97		1
Vinyl chloride	ND		ug/kg	97		1
Chloroethane	ND		ug/kg	97		1
1,1-Dichloroethene	ND		ug/kg	48		1
trans-1,2-Dichloroethene	ND		ug/kg	73		1
Trichloroethene	ND		ug/kg	48		1
1,2-Dichlorobenzene	ND		ug/kg	240		1

Date Collected:

L1627010

08/26/16 11:00

Project Name: Lab Number: **EVERSOURCE NH SRP**

Project Number: Report Date: 1607530 09/15/16

SAMPLE RESULTS

L1627010-04 Lab ID:

1607530-B102(S3-S4) Client ID:

Date Received: 08/29/16 Sample Location: NEWINGTON, NH Field Prep: Not Specified

Campio Eccanomi 11211111011	>· · , · · · ·				γ.	rtot opcomoa
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hi	igh - Westborough Lab)				
1,3-Dichlorobenzene	ND		ug/kg	240		1
1,4-Dichlorobenzene	ND		ug/kg	240		1
Methyl tert butyl ether	ND		ug/kg	97		1
p/m-Xylene	ND		ug/kg	97		1
o-Xylene	ND		ug/kg	97		1
Xylenes, Total	ND		ug/kg	97		1
cis-1,2-Dichloroethene	ND		ug/kg	48		1
1,2-Dichloroethene, Total	ND		ug/kg	48		1
Dibromomethane	ND		ug/kg	480		1
1,4-Dichlorobutane	ND		ug/kg	480		1
1,2,3-Trichloropropane	ND		ug/kg	480		1
Styrene	ND		ug/kg	97		1
Dichlorodifluoromethane	ND		ug/kg	480		1
Acetone	ND		ug/kg	1700		1
Carbon disulfide	ND		ug/kg	480		1
2-Butanone	ND		ug/kg	480		1
Vinyl acetate	ND		ug/kg	480		1
4-Methyl-2-pentanone	ND		ug/kg	480		1
2-Hexanone	ND		ug/kg	480		1
Ethyl methacrylate	ND		ug/kg	480		1
Acrylonitrile	ND		ug/kg	190		1
Bromochloromethane	ND		ug/kg	240		1
Tetrahydrofuran	ND		ug/kg	970		1
2,2-Dichloropropane	ND		ug/kg	240		1
1,2-Dibromoethane	ND		ug/kg	190		1
1,3-Dichloropropane	ND		ug/kg	240		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	48		1
Bromobenzene	ND		ug/kg	240		1
n-Butylbenzene	ND		ug/kg	48		1
sec-Butylbenzene	ND		ug/kg	48		1
tert-Butylbenzene	ND		ug/kg	240		1
o-Chlorotoluene	ND		ug/kg	240		1
p-Chlorotoluene	ND		ug/kg	240		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	240		1
Hexachlorobutadiene	ND		ug/kg	240		1
Isopropylbenzene	ND		ug/kg	48		1
p-Isopropyltoluene	ND		ug/kg	48		1
Naphthalene	ND		ug/kg	240		1
n-Propylbenzene	ND		ug/kg	48		1

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 11:00

Client ID: 1607530-B102(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High -	Westborough Lab)					
1,2,3-Trichlorobenzene	ND		ug/kg	240		1	
1,2,4-Trichlorobenzene	ND		ug/kg	240		1	
1,3,5-Trimethylbenzene	ND		ug/kg	240		1	
1,2,4-Trimethylbenzene	ND		ug/kg	240		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	240		1	
Ethyl ether	ND		ug/kg	240		1	

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	97		70-130				
Toluene-d8	101		70-130				
4-Bromofluorobenzene	98		70-130				
Dibromofluoromethane	93		70-130				

L1627010

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number:

Report Date: 09/15/16

Lab ID: L1627010-05

Client ID: 1607530-B101(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/05/16 14:06

Analyst: ΒN 84% Percent Solids:

Date Collected: 08/26/16 11:45

Date Received: 08/29/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 High - Westborough Lab									
Methylene chloride	ND		ug/kg	650		1			
1,1-Dichloroethane	ND		ug/kg	98		1			
Chloroform	ND		ug/kg	98		1			
Carbon tetrachloride	ND		ug/kg	65		1			
1,2-Dichloropropane	ND		ug/kg	230		1			
Dibromochloromethane	ND		ug/kg	65		1			
1,1,2-Trichloroethane	ND		ug/kg	98		1			
Tetrachloroethene	ND		ug/kg	65		1			
Chlorobenzene	ND		ug/kg	65		1			
Trichlorofluoromethane	ND		ug/kg	320		1			
1,2-Dichloroethane	ND		ug/kg	65		1			
1,1,1-Trichloroethane	ND		ug/kg	65		1			
Bromodichloromethane	ND		ug/kg	65		1			
trans-1,3-Dichloropropene	ND		ug/kg	65		1			
cis-1,3-Dichloropropene	ND		ug/kg	65		1			
1,3-Dichloropropene, Total	ND		ug/kg	65		1			
1,1-Dichloropropene	ND		ug/kg	320		1			
Bromoform	ND		ug/kg	260		1			
1,1,2,2-Tetrachloroethane	ND		ug/kg	65		1			
Benzene	ND		ug/kg	65		1			
Toluene	ND		ug/kg	98		1			
Ethylbenzene	ND		ug/kg	65		1			
Chloromethane	ND		ug/kg	320		1			
Bromomethane	ND		ug/kg	130		1			
Vinyl chloride	ND		ug/kg	130		1			
Chloroethane	ND		ug/kg	130		1			
1,1-Dichloroethene	ND		ug/kg	65		1			
trans-1,2-Dichloroethene	ND		ug/kg	98		1			
Trichloroethene	ND		ug/kg	65		1			
1,2-Dichlorobenzene	ND		ug/kg	320		1			

L1627010

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Report Date: 09/15/16

Lab ID: L1627010-05

1607530-B101(S1-S2) Client ID: Sample Location: NEWINGTON, NH

Date Collected: 08/26/16 11:45 Date Received: 08/29/16

Lab Number:

Field Prep: Not Specified

campio zocationi nizmino i oi	.,			1 1014 1 10	γ.	rtot opcomod	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High	h - Westborough Lab)					
1,3-Dichlorobenzene	ND		ug/kg	320		1	
1,4-Dichlorobenzene	ND		ug/kg	320		1	
Methyl tert butyl ether	ND		ug/kg	130		1	
p/m-Xylene	ND		ug/kg	130		1	
o-Xylene	ND		ug/kg	130		1	
Xylenes, Total	ND		ug/kg	130		1	
cis-1,2-Dichloroethene	ND		ug/kg	65		1	
1,2-Dichloroethene, Total	ND		ug/kg	65		1	
Dibromomethane	ND		ug/kg	650		1	
1,4-Dichlorobutane	ND		ug/kg	650		1	
1,2,3-Trichloropropane	ND		ug/kg	650		1	
Styrene	ND		ug/kg	130		1	
Dichlorodifluoromethane	ND		ug/kg	650		1	
Acetone	ND		ug/kg	2300		1	
Carbon disulfide	ND		ug/kg	650		1	
2-Butanone	ND		ug/kg	650		1	
Vinyl acetate	ND		ug/kg	650		1	
4-Methyl-2-pentanone	ND		ug/kg	650		1	
2-Hexanone	ND		ug/kg	650		1	
Ethyl methacrylate	ND		ug/kg	650		1	
Acrylonitrile	ND		ug/kg	260		1	
Bromochloromethane	ND		ug/kg	320		1	
Tetrahydrofuran	ND		ug/kg	1300		1	
2,2-Dichloropropane	ND		ug/kg	320		1	
1,2-Dibromoethane	ND		ug/kg	260		1	
1,3-Dichloropropane	ND		ug/kg	320		1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	65		1	
Bromobenzene	ND		ug/kg	320		1	
n-Butylbenzene	ND		ug/kg	65		1	
sec-Butylbenzene	ND		ug/kg	65		1	
tert-Butylbenzene	ND		ug/kg	320		1	
o-Chlorotoluene	ND		ug/kg	320		1	
p-Chlorotoluene	ND		ug/kg	320		1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	320		1	
Hexachlorobutadiene	ND		ug/kg	320		1	
Isopropylbenzene	ND		ug/kg	65		1	
p-Isopropyltoluene	ND		ug/kg	65		1	
Naphthalene	ND		ug/kg	320		1	
n-Propylbenzene	ND		ug/kg	65		1	

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 11:45

Client ID: 1607530-B101(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Hig	gh - Westborough Lab						
1,2,3-Trichlorobenzene	ND		ug/kg	320		1	
1,2,4-Trichlorobenzene	ND		ug/kg	320		1	
1,3,5-Trimethylbenzene	ND		ug/kg	320		1	
1,2,4-Trimethylbenzene	ND		ug/kg	320		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	320		1	
Ethyl ether	ND		ug/kg	320		1	

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	98		70-130				
Toluene-d8	101		70-130				
4-Bromofluorobenzene	97		70-130				
Dibromofluoromethane	94		70-130				

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number: L1627010

Report Date: 09/15/16

Lab ID: L1627010-06

Client ID: 1607530-B101(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 09/05/16 14:33

Analyst: BN Percent Solids: 81%

Date Collected: 08/26/16 12:00

Date Received: 08/29/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	gh - Westborough Lab					
Methylene chloride	ND		ug/kg	480		1
1,1-Dichloroethane	ND		ug/kg	71		1
Chloroform	ND		ug/kg	71		1
Carbon tetrachloride	ND		ug/kg	48		1
1,2-Dichloropropane	ND		ug/kg	170		1
Dibromochloromethane	ND		ug/kg	48		1
1,1,2-Trichloroethane	ND		ug/kg	71		1
Tetrachloroethene	ND		ug/kg	48		1
Chlorobenzene	ND		ug/kg	48		1
Trichlorofluoromethane	ND		ug/kg	240		1
1,2-Dichloroethane	ND		ug/kg	48		1
1,1,1-Trichloroethane	ND		ug/kg	48		1
Bromodichloromethane	ND		ug/kg	48		1
trans-1,3-Dichloropropene	ND		ug/kg	48		1
cis-1,3-Dichloropropene	ND		ug/kg	48		1
1,3-Dichloropropene, Total	ND		ug/kg	48		1
1,1-Dichloropropene	ND		ug/kg	240		1
Bromoform	ND		ug/kg	190		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	48		1
Benzene	ND		ug/kg	48		1
Toluene	ND		ug/kg	71		1
Ethylbenzene	ND		ug/kg	48		1
Chloromethane	ND		ug/kg	240		1
Bromomethane	ND		ug/kg	95		1
Vinyl chloride	ND		ug/kg	95		1
Chloroethane	ND		ug/kg	95		1
1,1-Dichloroethene	ND		ug/kg	48		1
trans-1,2-Dichloroethene	ND		ug/kg	71		1
Trichloroethene	ND		ug/kg	48		1
1,2-Dichlorobenzene	ND		ug/kg	240		1
·			**********			

L1627010

09/15/16

Project Name: EVERSOURCE NH SRP

L1627010-06

Project Number: 1607530 Report Date:

SAMPLE RESULTS

Date Collected: 08/26/16 12:00

Lab Number:

Client ID: 1607530-B101(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Campio Localioni 1121111101	O. 1, 1 11 1			1 1014 1 10	۲.	rtot oposinou	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 H	High - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	240		1	
1,4-Dichlorobenzene	ND		ug/kg	240		1	
Methyl tert butyl ether	ND		ug/kg	95		1	
p/m-Xylene	ND		ug/kg	95		1	
o-Xylene	ND		ug/kg	95		1	
Xylenes, Total	ND		ug/kg	95		1	
cis-1,2-Dichloroethene	ND		ug/kg	48		1	
1,2-Dichloroethene, Total	ND		ug/kg	48		1	
Dibromomethane	ND		ug/kg	480		1	
1,4-Dichlorobutane	ND		ug/kg	480		1	
1,2,3-Trichloropropane	ND		ug/kg	480		1	
Styrene	ND		ug/kg	95		1	
Dichlorodifluoromethane	ND		ug/kg	480		1	
Acetone	ND		ug/kg	1700		1	
Carbon disulfide	ND		ug/kg	480		1	
2-Butanone	ND		ug/kg	480		1	
Vinyl acetate	ND		ug/kg	480		1	
4-Methyl-2-pentanone	ND		ug/kg	480		1	
2-Hexanone	ND		ug/kg	480		1	
Ethyl methacrylate	ND		ug/kg	480		1	
Acrylonitrile	ND		ug/kg	190		1	
Bromochloromethane	ND		ug/kg	240		1	
Tetrahydrofuran	ND		ug/kg	950		1	
2,2-Dichloropropane	ND		ug/kg	240		1	
1,2-Dibromoethane	ND		ug/kg	190		1	
1,3-Dichloropropane	ND		ug/kg	240		1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	48		1	
Bromobenzene	ND		ug/kg	240		1	
n-Butylbenzene	ND		ug/kg	48		1	
sec-Butylbenzene	ND		ug/kg	48		1	
tert-Butylbenzene	ND		ug/kg	240		1	
o-Chlorotoluene	ND		ug/kg	240		1	
p-Chlorotoluene	ND		ug/kg	240		1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	240		1	
Hexachlorobutadiene	ND		ug/kg	240		1	
Isopropylbenzene	ND		ug/kg	48		1	
p-lsopropyltoluene	ND		ug/kg	48		1	
Naphthalene	ND		ug/kg	240		1	
n-Propylbenzene	ND		ug/kg	48		1	
Tri Topyibonzone	IND		ug/kg	+∪		ı	

Lab ID:

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 12:00

Client ID: 1607530-B101(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 High - Westborough Lab									
1,2,3-Trichlorobenzene	ND		ug/kg	240		1			
1,2,4-Trichlorobenzene	ND		ug/kg	240		1			
1,3,5-Trimethylbenzene	ND		ug/kg	240		1			
1,2,4-Trimethylbenzene	ND		ug/kg	240		1			
trans-1,4-Dichloro-2-butene	ND		ug/kg	240		1			
Ethyl ether	ND		ug/kg	240		1			

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	97		70-130				
Toluene-d8	101		70-130				
4-Bromofluorobenzene	98		70-130				
Dibromofluoromethane	93		70-130				

Project Name: EVERSOURCE NH SRP Lab Number:

Project Number: 1607530 **Report Date:** 09/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/05/16 08:21

Analyst: BN

Wolatile Organics by EPA 5035 High - Westborough Lab for sample(s): 01-06 Batch: WG929175-5 Methylene chloride ND ug/kg 500 1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 50 1,2-Dichloropropane ND ug/kg 50 1,1,2-Tichloroethane ND ug/kg 50 Dibromochloromethane ND ug/kg 50 1,1,2-Tichloroethane ND ug/kg 50 2-Chloroethylvinyl ether ND ug/kg 50 Tetrachloroethene ND ug/kg 50 Thichlorofluoromethane ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,1,1-Tichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene	Parameter	Result	Qualifier	Units	RL	МЕ	DL
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 1000 2-Chloroethylvinyl ether ND ug/kg 50 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg	Volatile Organics by EPA 5035 Hig	gh - Westbord	ough Lab fo	or sample(s):	01-06	Batch:	WG929175-5
1,1-Dichloroethane ND ug/kg 75 Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 1000 2-Chloroethylvinyl ether ND ug/kg 50 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 1,1-Trichloroethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg	Methylene chloride	ND		ug/kg	500	-	_
Chloroform ND ug/kg 75 Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 1,1,2-Trichloroethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 2-Chloroethylvinyl ether ND ug/kg 1000 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 Trichloroethane ND ug/kg 50 1,1-1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg		ND			75	-	-
Carbon tetrachloride ND ug/kg 50 1,2-Dichloropropane ND ug/kg 180 Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 2-Chloroethylvinyl ether ND ug/kg 50 Tetrachloroethane ND ug/kg 50 Chlorobenzene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,1-Dichloropropene, Total ND ug/kg 50 Bromoform ND ug/kg					75	-	-
1,2-Dichloropropane ND						-	-
Dibromochloromethane ND ug/kg 50 1,1,2-Trichloroethane ND ug/kg 75 2-Chloroethylvinyl ether ND ug/kg 1000 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichloroftuoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1-1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/k	1,2-Dichloropropane	ND			180	-	-
1,1,2-Trichloroethane ND ug/kg 75 2-Chloroethylvinyl ether ND ug/kg 1000 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichloroffluoromethane ND ug/kg 50 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 250 1,1-Dichloropropene ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND	Dibromochloromethane	ND			50	-	-
2-Chloroethylvinyl ether ND ug/kg 1000 Tetrachloroethene ND ug/kg 50 Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 250 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Ethy benzene ND ug/kg 50 Ethy benzene ND ug/kg	1,1,2-Trichloroethane	ND			75	-	<u>-</u>
Chlorobenzene ND ug/kg 50 Trichlorofluoromethane ND ug/kg 250 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 250 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 100	2-Chloroethylvinyl ether	ND			1000	-	-
Trichlorofluoromethane ND ug/kg 250 1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 100 Bromomethane ND ug/kg 100 <t< td=""><td>Tetrachloroethene</td><td>ND</td><td></td><td>ug/kg</td><td>50</td><td>-</td><td>-</td></t<>	Tetrachloroethene	ND		ug/kg	50	-	-
1,2-Dichloroethane ND ug/kg 50 1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	Chlorobenzene	ND		ug/kg	50	-	-
1,1,1-Trichloroethane ND ug/kg 50 Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 50 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	Trichlorofluoromethane	ND		ug/kg	250	-	-
Bromodichloromethane ND ug/kg 50 trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 250 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 50	1,2-Dichloroethane	ND		ug/kg	50	-	-
trans-1,3-Dichloropropene ND ug/kg 50 cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	1,1,1-Trichloroethane	ND		ug/kg	50	-	-
cis-1,3-Dichloropropene ND ug/kg 50 1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	Bromodichloromethane	ND		ug/kg	50	-	-
1,3-Dichloropropene, Total ND ug/kg 50 1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	trans-1,3-Dichloropropene	ND		ug/kg	50	-	-
1,1-Dichloropropene ND ug/kg 250 Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	cis-1,3-Dichloropropene	ND		ug/kg	50	-	-
Bromoform ND ug/kg 200 1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	1,3-Dichloropropene, Total	ND		ug/kg	50	-	-
1,1,2,2-Tetrachloroethane ND ug/kg 50 Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	1,1-Dichloropropene	ND		ug/kg	250	-	-
Benzene ND ug/kg 50 Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	Bromoform	ND		ug/kg	200	-	-
Toluene ND ug/kg 75 Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	1,1,2,2-Tetrachloroethane	ND		ug/kg	50	-	-
Ethy benzene ND ug/kg 50 Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	Benzene	ND		ug/kg	50	-	-
Chloromethane ND ug/kg 250 Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	Toluene	ND		ug/kg	75	-	-
Bromomethane ND ug/kg 100 Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	Ethy benzene	ND		ug/kg	50	-	-
Vinyl chloride ND ug/kg 100 Chloroethane ND ug/kg 100 1,1-Dichloroethene ND ug/kg 50	Chloromethane	ND		ug/kg	250	-	-
ChloroethaneNDug/kg1001,1-DichloroetheneNDug/kg50	Bromomethane	ND		ug/kg	100	-	-
1,1-Dichloroethene ND ug/kg 50	Vinyl chloride	ND		ug/kg	100	-	-
, , , , , , , , , , , , , , , , , , , ,	Chloroethane	ND		ug/kg	100	-	-
	1,1-Dichloroethene	ND		ug/kg	50	-	-
trans-1,2-Dichloroethene ND ug/kg 75	trans-1,2-Dichloroethene	ND		ug/kg	75	-	-

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: Report Date: 09/15/16

1607530

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/05/16 08:21

Analyst: ΒN

Parameter	Result	Qualifier	Units	RL	М	DL
Volatile Organics by EPA 5035 High	- Westbord	ough Lab fo	or sample(s):	01-06	Batch:	WG929175-5
Trichloroethene	ND		ug/kg	50	-	-
1,2-Dichlorobenzene	ND		ug/kg	250	_	<u>-</u>
1,3-Dichlorobenzene	ND		ug/kg	250	_	<u>-</u>
1,4-Dichlorobenzene	ND		ug/kg	250	_	-
Methyl tert butyl ether	ND		ug/kg	100	_	-
p/m-Xylene	ND		ug/kg	100	_	-
o-Xylene	ND		ug/kg	100	-	-
Xylenes, Total	ND		ug/kg	100	-	-
cis-1,2-Dichloroethene	ND		ug/kg	50	-	-
1,2-Dichloroethene, Total	ND		ug/kg	50	-	-
Dibromomethane	ND		ug/kg	500	-	-
1,4-Dichlorobutane	ND		ug/kg	500	-	-
1,2,3-Trichloropropane	ND		ug/kg	500	-	-
Styrene	ND		ug/kg	100	-	-
Dichlorodifluoromethane	ND		ug/kg	500	-	-
Acetone	ND		ug/kg	1800	-	-
Carbon disulfide	ND		ug/kg	500	-	-
2-Butanone	ND		ug/kg	500	-	-
Vinyl acetate	ND		ug/kg	500	-	-
4-Methyl-2-pentanone	ND		ug/kg	500	_	-
2-Hexanone	ND		ug/kg	500	_	-
Ethyl methacrylate	ND		ug/kg	500	_	-
Acrolein	ND		ug/kg	1200	_	-
Acrylonitrile	ND		ug/kg	200	-	-
Bromochloromethane	ND		ug/kg	250	-	-
Tetrahydrofuran	ND		ug/kg	1000	_	-
2,2-Dichloropropane	ND		ug/kg	250	_	-
1,2-Dibromoethane	ND		ug/kg	200	_	-
1,3-Dichloropropane	ND		ug/kg	250	-	-

Project Name: EVERSOURCE NH SRP Lab Number:

Project Number: 1607530 **Report Date:** 09/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/05/16 08:21

Analyst: BN

Parameter	Result	Qualifier	Units	RL	М	DL
Volatile Organics by EPA 5035 High	- Westbor	ough Lab fo	or sample(s):	01-06	Batch:	WG929175-5
1,1,1,2-Tetrachloroethane	ND		ug/kg	50	-	-
Bromobenzene	ND		ug/kg	250	-	-
n-Buty benzene	ND		ug/kg	50	-	-
sec-Buty benzene	ND		ug/kg	50	-	-
tert-Butylbenzene	ND		ug/kg	250	-	-
1,3,5-Trichlorobenzene	ND		ug/kg	200	-	-
o-Chlorotoluene	ND		ug/kg	250	-	-
p-Chlorotoluene	ND		ug/kg	250	-	-
1,2-Dibromo-3-chloropropane	ND		ug/kg	250	-	-
Hexachlorobutadiene	ND		ug/kg	250	-	-
Isopropylbenzene	ND		ug/kg	50	-	-
p-Isopropyltoluene	ND		ug/kg	50	-	-
Naphthalene	ND		ug/kg	250	_	-
n-Propy benzene	ND		ug/kg	50	_	-
1,2,3-Trichlorobenzene	ND		ug/kg	250	-	-
1,2,4-Trichlorobenzene	ND		ug/kg	250	-	-
1,3,5-Trimethylbenzene	ND		ug/kg	250	_	-
1,2,4-Trimethylbenzene	ND		ug/kg	250	_	-
trans-1,4-Dichloro-2-butene	ND		ug/kg	250	_	-
Halothane	ND		ug/kg	2000	_	-
Ethyl ether	ND		ug/kg	250	_	-
Methyl Acetate	ND		ug/kg	1000	_	-
Ethyl Acetate	ND		ug/kg	1000	_	-
Isopropyl Ether	ND		ug/kg	200	-	-
Cyclohexane	ND		ug/kg	1000	_	-
Tert-Butyl Alcohol	ND		ug/kg	5000	-	-
Ethyl-Tert-Butyl-Ether	ND		ug/kg	200	_	-
Tertiary-Amyl Methyl Ether	ND		ug/kg	200	_	-
1,4-Dioxane	ND		ug/kg	5000	-	-

Project Name: EVERSOURCE NH SRP Lab Number:

Project Number: 1607530 **Report Date:** 09/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/05/16 08:21

Analyst: BN

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 High	n - Westbord	ough Lab fo	or sample(s):	01-06	Batch: WG929175-5
Methyl cyclohexane	ND		ug/kg	200	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	1000	
p-Diethylbenzene	ND		ug/kg	200	
4-Ethyltoluene	ND		ug/kg	200	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	200	

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	98		70-130					
Toluene-d8	99		70-130					
4-Bromofluorobenzene	98		70-130					
D bromofluoromethane	96		70-130					

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Westh	oorough Lab Ass	ociated sample(s): 01-06 Batc	h: WG929175-3 WG9291	75-4	
Methylene chloride	89	87	70-130	2	30
1,1-Dichloroethane	96	95	70-130	1	30
Chloroform	95	93	70-130	2	30
Carbon tetrachloride	93	91	70-130	2	30
1,2-Dichloropropane	94	92	70-130	2	30
Dibromochloromethane	92	92	70-130	0	30
1,1,2-Trichloroethane	94	93	70-130	1	30
2-Chloroethylvinyl ether	94	93	70-130	1	30
Tetrachloroethene	103	98	70-130	5	30
Chlorobenzene	96	94	70-130	2	30
Trichlorofluoromethane	112	107	70-139	5	30
1,2-Dichloroethane	93	92	70-130	1	30
1,1,1-Trichloroethane	95	93	70-130	2	30
Bromodichloromethane	92	89	70-130	3	30
trans-1,3-Dichloropropene	96	94	70-130	2	30
cis-1,3-Dichloropropene	95	95	70-130	0	30
1,1-Dichloropropene	107	104	70-130	3	30
Bromoform	83	83	70-130	0	30
1,1,2,2-Tetrachloroethane	94	93	70-130	1	30
Benzene	97	94	70-130	3	30
Toluene	97	94	70-130	3	30

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Westt	oorough Lab Ass	ociated sample(s): 01-06 Batch	n: WG929175-3 WG9291	75-4	
Ethylbenzene	99	95	70-130	4	30
Chloromethane	115	111	52-130	4	30
Bromomethane	109	103	57-147	6	30
Vinyl chloride	104	99	67-130	5	30
Chloroethane	112	104	50-151	7	30
1,1-Dichloroethene	89	85	65-135	5	30
trans-1,2-Dichloroethene	99	95	70-130	4	30
Trichloroethene	98	94	70-130	4	30
1,2-Dichlorobenzene	99	98	70-130	1	30
1,3-Dichlorobenzene	100	98	70-130	2	30
1,4-Dichlorobenzene	99	97	70-130	2	30
Methyl tert butyl ether	92	91	66-130	1	30
p/m-Xylene	101	97	70-130	4	30
o-Xylene	101	98	70-130	3	30
cis-1,2-Dichloroethene	97	94	70-130	3	30
Dibromomethane	91	90	70-130	1	30
1,4-Dichlorobutane	94	92	70-130	2	30
1,2,3-Trichloropropane	94	94	68-130	0	30
Styrene	100	97	70-130	3	30
Dichlorodifluoromethane	118	112	30-146	5	30
Acetone	86	86	54-140	0	30

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Westbo	orough Lab Ass	ociated samp	ole(s): 01-06 Bat	ch: WG9	929175-3 WG929	175-4	
Carbon disulfide	73		72		59-130	1	30
2-Butanone	77		78		70-130	1	30
Vinyl acetate	95		96		70-130	1	30
4-Methyl-2-pentanone	89		88		70-130	1	30
2-Hexanone	86		86		70-130	0	30
Ethyl methacrylate	84		83		70-130	1	30
Acrolein	44	Q	47	Q	70-130	7	30
Acrylonitrile	84		83		70-130	1	30
Bromochloromethane	97		95		70-130	2	30
Tetrahydrofuran	84		85		66-130	1	30
2,2-Dichloropropane	97		94		70-130	3	30
1,2-Dibromoethane	94		92		70-130	2	30
1,3-Dichloropropane	96		94		69-130	2	30
1,1,1,2-Tetrachloroethane	95		93		70-130	2	30
Bromobenzene	100		97		70-130	3	30
n-Butylbenzene	109		106		70-130	3	30
sec-Butylbenzene	104		101		70-130	3	30
tert-Butylbenzene	103		100		70-130	3	30
1,3,5-Trichlorobenzene	104		102		70-139	2	30
o-Chlorotoluene	98		95		70-130	3	30
p-Chlorotoluene	98		97		70-130	1	30

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

rameter	LCS %Recovery	LCSD Qual %Recovery C	%Recovery Qual Limits	RPD	RPD Qual Limits
latile Organics by EPA 5035 High - W	estborough Lab Associ	ated sample(s): 01-06 Batch:	WG929175-3 WG9291	75-4	
1,2-Dibromo-3-chloropropane	84	87	68-130	4	30
Hexachlorobutadiene	107	104	67-130	3	30
Isopropylbenzene	102	98	70-130	4	30
p-Isopropyltoluene	106	103	70-130	3	30
Naphthalene	96	95	70-130	1	30
n-Propylbenzene	104	101	70-130	3	30
1,2,3-Trichlorobenzene	101	100	70-130	1	30
1,2,4-Trichlorobenzene	103	102	70-130	1	30
1,3,5-Trimethylbenzene	102	98	70-130	4	30
1,2,4-Trimethylbenzene	103	101	70-130	2	30
trans-1,4-Dichloro-2-butene	90	90	70-130	0	30
Halothane	107	105	70-130	2	20
Ethyl ether	105	102	67-130	3	30
Methyl Acetate	101	100	65-130	1	30
Ethyl Acetate	92	94	70-130	2	30
Isopropyl Ether	93	92	66-130	1	30
Cyclohexane	108	105	70-130	3	30
Tert-Butyl Alcohol	76	76	70-130	0	30
Ethyl-Tert-Butyl-Ether	94	93	70-130	1	30
Tertiary-Amyl Methyl Ether	91	90	70-130	1	30
1,4-Dioxane	78	75	65-136	4	30

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - Westl	oorough Lab Ass	ociated sample	(s): 01-06	Batch: WG9	929175-3 WG929 ²	175-4		
Methyl cyclohexane	114		109		70-130	4		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	101		96		70-130	5		30
p-Diethylbenzene	107		104		70-130	3		30
4-Ethyltoluene	109		105		70-130	4		30
1,2,4,5-Tetramethylbenzene	105		103		70-130	2		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	%Recovery Qual		Qual	Criteria	
1,2-Dichloroethane-d4	95		97		70-130	
Toluene-d8	101		100		70-130	
4-Bromofluorobenzene	101		100		70-130	
Dibromofluoromethane	100		100		70-130	

SEMIVOLATILES

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

L1627010

Lab Number:

Report Date: 09/15/16

Lab ID: L1627010-01

Client ID: 1607530-B103(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 09/02/16 04:52

Analyst: K۷ 93% Percent Solids:

Date Collected: 08/26/16 09:25 Date Received: 08/29/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 08/31/16 00:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Acenaphthene	ND		ug/kg	140		1
Benzidine	ND		ug/kg	580		1
1,2,4-Trichlorobenzene	ND		ug/kg	180		1
Hexachlorobenzene	ND		ug/kg	110		1
Bis(2-chloroethyl)ether	ND		ug/kg	160		1
2-Chloronaphthalene	ND		ug/kg	180		1
1,2-Dichlorobenzene	ND		ug/kg	180		1
1,3-Dichlorobenzene	ND		ug/kg	180		1
1,4-Dichlorobenzene	ND		ug/kg	180		1
3,3'-Dichlorobenzidine	ND		ug/kg	180		1
2,4-Dinitrotoluene	ND		ug/kg	180		1
2,6-Dinitrotoluene	ND		ug/kg	180		1
Azobenzene	ND		ug/kg	180		1
Fluoranthene	ND		ug/kg	110		1
4-Chlorophenyl phenyl ether	ND		ug/kg	180		1
4-Bromophenyl phenyl ether	ND		ug/kg	180		1
Bis(2-chloroisopropyl)ether	ND		ug/kg	210		1
Bis(2-chloroethoxy)methane	ND		ug/kg	190		1
Hexachlorobutadiene	ND		ug/kg	180		1
Hexachlorocyclopentadiene	ND		ug/kg	500		1
Hexachloroethane	ND		ug/kg	140		1
Isophorone	ND		ug/kg	160		1
Naphthalene	ND		ug/kg	180		1
Nitrobenzene	ND		ug/kg	160		1
NDPA/DPA	ND		ug/kg	140		1
n-Nitrosodi-n-propylamine	ND		ug/kg	180		1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180		1
Butyl benzyl phthalate	ND		ug/kg	180		1
Di-n-butylphthalate	ND		ug/kg	180		1
Di-n-octylphthalate	ND		ug/kg	180		1

L1627010

Project Name: EVERSOURCE NH SRP Lab Number:

Project Number: Report Date: 1607530 09/15/16

SAMPLE RESULTS

Lab ID: L1627010-01 Date Collected: 08/26/16 09:25

1607530-B103(S1-S2) Client ID: Date Received: 08/29/16 Sample Location: NEWINGTON, NH Field Prep: Not Specified

Campio Eccation.	•, •••			1 1014 1 10	γ.	rtot opoomoa	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Diethyl phthalate	ND		ug/kg	180		1	
Dimethyl phthalate	ND		ug/kg	180		1	
Benzo(a)anthracene	ND		ug/kg	110		1	
Benzo(a)pyrene	ND		ug/kg	140		1	
Benzo(b)fluoranthene	ND		ug/kg	110		1	
Benzo(k)fluoranthene	ND		ug/kg	110		1	
Chrysene	ND		ug/kg	110		1	
Acenaphthylene	ND		ug/kg	140		1	
Anthracene	ND		ug/kg	110		1	
Benzo(ghi)perylene	ND		ug/kg	140		1	
Fluorene	ND		ug/kg	180		1	
Phenanthrene	ND		ug/kg	110		1	
Dibenzo(a,h)anthracene	ND		ug/kg	110		1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1	
Pyrene	ND		ug/kg	110		1	
Biphenyl	ND		ug/kg	400		1	
Aniline	ND		ug/kg	210		1	
4-Chloroaniline	ND		ug/kg	180		1	
1-Methylnaphthalene	ND		ug/kg	180		1	
2-Nitroaniline	ND		ug/kg	180		1	
3-Nitroaniline	ND		ug/kg	180		1	
4-Nitroaniline	ND		ug/kg	180		1	
Dibenzofuran	ND		ug/kg	180		1	
2-Methylnaphthalene	ND		ug/kg	210		1	
n-Nitrosodimethylamine	ND		ug/kg	350		1	
2,4,6-Trichlorophenol	ND		ug/kg	110		1	
p-Chloro-m-cresol	ND		ug/kg	180		1	
2-Chlorophenol	ND		ug/kg	180		1	
2,4-Dichlorophenol	ND		ug/kg	160		1	
2,4-Dimethylphenol	ND		ug/kg	180		1	
2-Nitrophenol	ND		ug/kg	380		1	
4-Nitrophenol	ND		ug/kg	250		1	
2,4-Dinitrophenol	ND		ug/kg	850		1	
4,6-Dinitro-o-cresol	ND		ug/kg	460		1	
Pentachlorophenol	ND		ug/kg	140		1	
Phenol	ND		ug/kg	180		1	
2-Methylphenol	ND		ug/kg	180		1	
3-Methylphenol/4-Methylphenol	ND		ug/kg	250		1	
2,4,5-Trichlorophenol	ND		ug/kg	180		1	

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 09:25

Client ID: 1607530-B103(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/N	MS - Westborough Lab						
Benzoic Acid	ND		ug/kg	570		1	
Benzyl Alcohol	ND		ug/kg	180		1	
Carbazole	ND		ug/kg	180		1	
Pyridine	ND		ug/kg	710		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	98		25-120	
Phenol-d6	101		10-120	
Nitrobenzene-d5	103		23-120	
2-Fluorobiphenyl	83		30-120	
2,4,6-Tribromophenol	89		10-136	
4-Terphenyl-d14	84		18-120	

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number: L1627010

Report Date: 09/15/16

Lab ID: L1627010-02

Client ID: 1607530-B103(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 09/02/16 05:18

Analyst: KV Percent Solids: 92% Date Collected: 08/26/16 09:55
Date Received: 08/29/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 08/31/16 00:26

ND		ug/kg ug/kg ug/kg ug/kg	140 580 180	 	1 1 1
ND ND ND ND		ug/kg ug/kg	580 180		1
ND ND ND		ug/kg ug/kg	180		
ND ND ND		ug/kg			1
ND ND			100		Į.
ND			.00		1
		ug/kg	160		1
ND		ug/kg	180		1
IND		ug/kg	180		1
ND		ug/kg	180		1
ND		ug/kg	180		1
ND		ug/kg	180		1
ND		ug/kg	180		1
ND			180		1
ND		ug/kg	180		1
ND		ug/kg	100		1
ND		ug/kg	180		1
ND		ug/kg	180		1
ND		ug/kg	210		1
ND		ug/kg	190		1
ND		ug/kg	180		1
ND		ug/kg	500		1
ND		ug/kg	140		1
ND		ug/kg	160		1
ND		ug/kg	180		1
ND		ug/kg	160		1
ND		ug/kg	140		1
ND		ug/kg	180		1
ND		ug/kg	180		1
ND		ug/kg	180		1
ND		ug/kg	180		1
ND		ug/kg	180		1
	ND N	ND N	ND ug/kg ND ug/kg	ND ug/kg 180 ND ug/kg 100 ND ug/kg 180 ND ug/kg 180 ND ug/kg 180 ND ug/kg 190 ND ug/kg 180 ND ug/kg 140 ND ug/kg 160 ND ug/kg 160 ND ug/kg 140 ND ug/kg 140 ND ug/kg 180 ND	ND ug/kg 180 ND ug/kg 190 ND ug/kg 190 ND ug/kg 180 ND ug/kg 140 ND ug/kg 160 ND ug/kg 160 ND ug/kg 160 ND ug/kg 180 ND ug

L1627010

09/15/16

Project Name: EVERSOURCE NH SRP

1607530-B103(S3-S4)

NEWINGTON, NH

L1627010-02

Project Number: 1607530

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 08/26/16 09:55

Date Received: 08/29/16

Lab Number:

Report Date:

Field Prep: Not Specified

	N, INII			i icia i ic	ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - '	Westborough Lab					
Diethyl phthalate	ND		ug/kg	180		1
Dimethyl phthalate	ND		ug/kg	180		1
Benzo(a)anthracene	ND		ug/kg	100		1
Benzo(a)pyrene	ND		ug/kg	140		1
Benzo(b)fluoranthene	ND		ug/kg	100		1
Benzo(k)fluoranthene	ND		ug/kg	100		1
Chrysene	ND		ug/kg	100		1
Acenaphthylene	ND		ug/kg	140		1
Anthracene	ND		ug/kg	100		1
Benzo(ghi)perylene	ND		ug/kg	140		1
Fluorene	ND		ug/kg	180		1
Phenanthrene	ND		ug/kg	100		1
Dibenzo(a,h)anthracene	ND		ug/kg	100		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1
Pyrene	ND		ug/kg	100		1
Biphenyl	ND		ug/kg	400		1
Aniline	ND		ug/kg	210		1
4-Chloroaniline	ND		ug/kg	180		1
1-Methylnaphthalene	ND		ug/kg	180		1
2-Nitroaniline	ND		ug/kg	180		1
3-Nitroaniline	ND		ug/kg	180		1
4-Nitroaniline	ND		ug/kg	180		1
Dibenzofuran	ND		ug/kg	180		1
2-Methylnaphthalene	ND		ug/kg	210		1
n-Nitrosodimethylamine	ND		ug/kg	350		1
2,4,6-Trichlorophenol	ND		ug/kg	100		1
p-Chloro-m-cresol	ND		ug/kg	180		1
2-Chlorophenol	ND		ug/kg	180		1
2,4-Dichlorophenol	ND		ug/kg	160		1
2,4-Dimethylphenol	ND		ug/kg	180		1
2-Nitrophenol	ND		ug/kg	380		1
4-Nitrophenol	ND		ug/kg	250		1
2,4-Dinitrophenol	ND		ug/kg	840		1
4,6-Dinitro-o-cresol	ND		ug/kg	460		1
Pentachlorophenol	ND		ug/kg	140		1
Phenol	ND		ug/kg	180		1
2-Methylphenol	ND		ug/kg	180		1
3-Methylphenol/4-Methylphenol	ND		ug/kg	250		1
2,4,5-Trichlorophenol	ND		ug/kg	180		1

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 09:55

Client ID: 1607530-B103(S3-S4) Date Received: 08/29/16 Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/	MS - Westborough Lab						
Benzoic Acid	ND		ug/kg	570		1	
Benzyl Alcohol	ND		ug/kg	180		1	
Carbazole	ND		ug/kg	180		1	
Pyridine	ND		ug/kg	700		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	93		25-120	
Phenol-d6	98		10-120	
Nitrobenzene-d5	98		23-120	
2-Fluorobiphenyl	85		30-120	
2,4,6-Tribromophenol	92		10-136	
4-Terphenyl-d14	93		18-120	

L1627010

09/15/16

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1627010-03

Client ID: 1607530-B102(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 09/02/16 05:43

Analyst: KV Percent Solids: 84% Date Collected: 08/26/16 10:45
Date Received: 08/29/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 08/31/16 00:26

	Qualifier	Units	RL	MDL	Dilution Factor
estborough Lab					
ND		ug/kg	150		1
ND			640		1
ND			190		1
ND			120		1
ND		ug/kg	170		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	120		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	230		1
ND		ug/kg	210		1
ND		ug/kg	190		1
ND		ug/kg	550		1
ND		ug/kg	150		1
ND		ug/kg	170		1
ND		ug/kg	190		1
ND		ug/kg	170		1
ND		ug/kg	150		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
ND		ug/kg	190		1
	ND N	ND N	ND ug/kg ND ug/kg <td>ND ug/kg 150 ND ug/kg 640 ND ug/kg 190 ND ug/kg 120 ND ug/kg 170 ND ug/kg 190 ND ug/kg 230 ND ug/kg 210 ND ug/kg 150 ND</td> <td>ND ug/kg 150 ND ug/kg 640 ND ug/kg 190 ND ug/kg 120 ND ug/kg 170 ND ug/kg 190 ND ug/kg 150 ND ug/kg 150 ND ug/kg 170 ND ug/kg 150 ND ug/kg 190 ND ug/kg 190</td>	ND ug/kg 150 ND ug/kg 640 ND ug/kg 190 ND ug/kg 120 ND ug/kg 170 ND ug/kg 190 ND ug/kg 230 ND ug/kg 210 ND ug/kg 150 ND	ND ug/kg 150 ND ug/kg 640 ND ug/kg 190 ND ug/kg 120 ND ug/kg 170 ND ug/kg 190 ND ug/kg 150 ND ug/kg 150 ND ug/kg 170 ND ug/kg 150 ND ug/kg 190 ND ug/kg 190

L1627010

09/15/16

Project Name: EVERSOURCE NH SRP

1607530-B102(S1-S2)

L1627010-03

Project Number: 1607530

Lab ID:

Client ID:

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 08/26/16 10:45

Date Received: 08/29/16 Field Prep: Not Specified

Client ID.	100/530-6102(51-52)				Date Re		06/29/16	
Sample Location:	NEWINGTON, NH				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organic	s by GC/MS - Westboro	ugh Lab						
Diethyl phthalate		ND		ug/kg	190		1	
Dimethyl phthalate		ND		ug/kg	190		1	
Benzo(a)anthracene		ND		ug/kg	120		1	
Benzo(a)pyrene		ND		ug/kg	150		1	
Benzo(b)fluoranthene		ND		ug/kg	120		1	
Benzo(k)fluoranthene		ND		ug/kg	120		1	
Chrysene		ND		ug/kg	120		1	
Acenaphthylene		ND		ug/kg	150		1	
Anthracene		ND		ug/kg	120		1	
Benzo(ghi)perylene		ND		ug/kg	150		1	
Fluorene		ND		ug/kg	190		1	
Phenanthrene		ND		ug/kg	120		1	
Dibenzo(a,h)anthracene		ND		ug/kg	120		1	
Indeno(1,2,3-cd)pyrene		ND		ug/kg	150		1	
Pyrene		ND		ug/kg	120		1	
Biphenyl		ND		ug/kg	440		1	
Aniline		ND		ug/kg	230		1	
4-Chloroaniline		ND		ug/kg	190		1	
1-Methylnaphthalene		ND		ug/kg	190		1	
2-Nitroaniline		ND		ug/kg	190		1	
3-Nitroaniline		ND		ug/kg	190		1	
4-Nitroaniline		ND		ug/kg	190		1	
Dibenzofuran		ND		ug/kg	190		1	
2-Methylnaphthalene		ND		ug/kg	230		1	
n-Nitrosodimethylamine		ND		ug/kg	390		1	
2,4,6-Trichlorophenol		ND		ug/kg	120		1	
p-Chloro-m-cresol		ND		ug/kg	190		1	
2-Chlorophenol		ND		ug/kg	190		1	
2,4-Dichlorophenol		ND		ug/kg	170		1	
2,4-Dimethylphenol		ND		ug/kg	190		1	
2-Nitrophenol		ND		ug/kg	420		1	
4-Nitrophenol		ND		ug/kg	270		1	
2,4-Dinitrophenol		ND		ug/kg	930		1	
4,6-Dinitro-o-cresol		ND		ug/kg	500		1	
Pentachlorophenol		ND		ug/kg	150		1	
Phenol		ND		ug/kg	190		1	
2-Methylphenol		ND		ug/kg	190		1	
3-Methylphenol/4-Methylphe	enol	ND		ug/kg	280		1	
2,4,5-Trichlorophenol		ND		ug/kg	190		1	

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 10:45

Client ID: 1607530-B102(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/	MS - Westborough Lab					
Benzoic Acid	ND		ug/kg	630		1
Benzyl Alcohol	ND		ug/kg	190		1
Carbazole	ND		ug/kg	190		1
Pyridine	ND		ug/kg	770		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	89		25-120	
Phenol-d6	93		10-120	
Nitrobenzene-d5	96		23-120	
2-Fluorobiphenyl	82		30-120	
2,4,6-Tribromophenol	90		10-136	
4-Terphenyl-d14	86		18-120	

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number: L1627010

Report Date: 09/15/16

Lab ID: L1627010-04

Client ID: 1607530-B102(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 09/02/16 06:08

Analyst: KV Percent Solids: 79% Date Collected: 08/26/16 11:00
Date Received: 08/29/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 08/31/16 00:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acenaphthene	ND		ug/kg	170		1
Benzidine	ND		ug/kg	690		1
1,2,4-Trichlorobenzene	ND		ug/kg	210		1
Hexachlorobenzene	ND		ug/kg	120		1
Bis(2-chloroethyl)ether	ND		ug/kg	190		1
2-Chloronaphthalene	ND		ug/kg	210		1
1,2-Dichlorobenzene	ND		ug/kg	210		1
1,3-Dichlorobenzene	ND		ug/kg	210		1
1,4-Dichlorobenzene	ND		ug/kg	210		1
3,3'-Dichlorobenzidine	ND		ug/kg	210		1
2,4-Dinitrotoluene	ND		ug/kg	210		1
2,6-Dinitrotoluene	ND		ug/kg	210		1
Azobenzene	ND		ug/kg	210		1
Fluoranthene	ND		ug/kg	120		1
4-Chlorophenyl phenyl ether	ND		ug/kg	210		1
4-Bromophenyl phenyl ether	ND		ug/kg	210		1
Bis(2-chloroisopropyl)ether	ND		ug/kg	250		1
Bis(2-chloroethoxy)methane	ND		ug/kg	220		1
Hexachlorobutadiene	ND		ug/kg	210		1
Hexachlorocyclopentadiene	ND		ug/kg	600		1
Hexachloroethane	ND		ug/kg	170		1
Isophorone	ND		ug/kg	190		1
Naphthalene	ND		ug/kg	210		1
Nitrobenzene	ND		ug/kg	190		1
NDPA/DPA	ND		ug/kg	170		1
n-Nitrosodi-n-propylamine	ND		ug/kg	210		1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210		1
Butyl benzyl phthalate	ND		ug/kg	210		1
Di-n-butylphthalate	ND		ug/kg	210		1
Di-n-octylphthalate	ND		ug/kg	210		1

L1627010

09/15/16

Project Name: EVERSOURCE NH SRP

L1627010-04

1607530-B102(S3-S4)

NEWINGTON, NH

Project Number: 1607530

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 08/26/16 11:00

Lab Number:

Report Date:

Date Received: 08/29/16

Field Prep: Not Specified

	N, INII			i icia i ic	ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - '	Westborough Lab					
Diethyl phthalate	ND		ug/kg	210		1
Dimethyl phthalate	ND		ug/kg	210		1
Benzo(a)anthracene	ND		ug/kg	120		1
Benzo(a)pyrene	ND		ug/kg	170		1
Benzo(b)fluoranthene	ND		ug/kg	120		1
Benzo(k)fluoranthene	ND		ug/kg	120		1
Chrysene	ND		ug/kg	120		1
Acenaphthylene	ND		ug/kg	170		1
Anthracene	ND		ug/kg	120		1
Benzo(ghi)perylene	ND		ug/kg	170		1
Fluorene	ND		ug/kg	210		1
Phenanthrene	ND		ug/kg	120		1
Dibenzo(a,h)anthracene	ND		ug/kg	120		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	170		1
Pyrene	ND		ug/kg	120		1
Biphenyl	ND		ug/kg	480		1
Aniline	ND		ug/kg	250		1
4-Chloroaniline	ND		ug/kg	210		1
1-Methylnaphthalene	ND		ug/kg	210		1
2-Nitroaniline	ND		ug/kg	210		1
3-Nitroaniline	ND		ug/kg	210		1
4-Nitroaniline	ND		ug/kg	210		1
Dibenzofuran	ND		ug/kg	210		1
2-Methylnaphthalene	ND		ug/kg	250		1
n-Nitrosodimethylamine	ND		ug/kg	420		1
2,4,6-Trichlorophenol	ND		ug/kg	120		1
p-Chloro-m-cresol	ND		ug/kg	210		1
2-Chlorophenol	ND		ug/kg	210		1
2,4-Dichlorophenol	ND		ug/kg	190		1
2,4-Dimethylphenol	ND		ug/kg	210		1
2-Nitrophenol	ND		ug/kg	450		1
4-Nitrophenol	ND		ug/kg	290		1
2,4-Dinitrophenol	ND		ug/kg	1000		1
4,6-Dinitro-o-cresol	ND		ug/kg	540		1
Pentachlorophenol	ND		ug/kg	170		1
Phenol	ND		ug/kg	210		1
2-Methylphenol	ND		ug/kg	210		1
3-Methylphenol/4-Methylphenol	ND		ug/kg	300		1
2,4,5-Trichlorophenol	ND		ug/kg	210		1

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: L1627010-04 Date Collected: 08/26/16 11:00

Client ID: 1607530-B102(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/	MS - Westborough Lab						
Benzoic Acid	ND		ug/kg	680		1	
Benzyl Alcohol	ND		ug/kg	210		1	
Carbazole	ND		ug/kg	210		1	
Pyridine	ND		ug/kg	830		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	91	25-120	
Phenol-d6	94	10-120	
Nitrobenzene-d5	97	23-120	
2-Fluorobiphenyl	79	30-120	
2,4,6-Tribromophenol	84	10-136	
4-Terphenyl-d14	82	18-120	

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

L1627010

Lab Number:

Report Date: 09/15/16

Lab ID: L1627010-05

Client ID: 1607530-B101(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 09/02/16 06:34

Analyst: K۷ 84% Percent Solids:

Date Collected: 08/26/16 11:45 Date Received: 08/29/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 08/31/16 00:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	160		1
Benzidine	ND		ug/kg	640		1
1,2,4-Trichlorobenzene	ND		ug/kg	200		1
Hexachlorobenzene	ND		ug/kg	120		1
Bis(2-chloroethyl)ether	ND		ug/kg	180		1
2-Chloronaphthalene	ND		ug/kg	200		1
1,2-Dichlorobenzene	ND		ug/kg	200		1
1,3-Dichlorobenzene	ND		ug/kg	200		1
1,4-Dichlorobenzene	ND		ug/kg	200		1
3,3'-Dichlorobenzidine	ND		ug/kg	200		1
2,4-Dinitrotoluene	ND		ug/kg	200		1
2,6-Dinitrotoluene	ND		ug/kg	200		1
Azobenzene	ND		ug/kg	200		1
Fluoranthene	ND		ug/kg	120		1
4-Chlorophenyl phenyl ether	ND		ug/kg	200		1
4-Bromophenyl phenyl ether	ND		ug/kg	200		1
Bis(2-chloroisopropyl)ether	ND		ug/kg	230		1
Bis(2-chloroethoxy)methane	ND		ug/kg	210		1
Hexachlorobutadiene	ND		ug/kg	200		1
Hexachlorocyclopentadiene	ND		ug/kg	560		1
Hexachloroethane	ND		ug/kg	160		1
Isophorone	ND		ug/kg	180		1
Naphthalene	ND		ug/kg	200		1
Nitrobenzene	ND		ug/kg	180		1
NDPA/DPA	ND		ug/kg	160		1
n-Nitrosodi-n-propylamine	ND		ug/kg	200		1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200		1
Butyl benzyl phthalate	ND		ug/kg	200		1
Di-n-butylphthalate	ND		ug/kg	200		1
Di-n-octylphthalate	ND		ug/kg	200		1

L1627010

09/15/16

Project Name: EVERSOURCE NH SRP

L1627010-05

1607530-B101(S1-S2)

Project Number: 1607530

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 08/26/16 11:45

Lab Number:

Report Date:

Date Received: 08/29/16 Field Prep: Not Specified

Client ID.	160/530-6101(51-52)				Date Re		06/29/16	
Sample Location:	NEWINGTON, NH				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organic	s by GC/MS - Westborou	ugh Lab						
Diethyl phthalate		ND		ug/kg	200		1	
Dimethyl phthalate		ND		ug/kg	200		1	
Benzo(a)anthracene		ND		ug/kg	120		1	
Benzo(a)pyrene		ND		ug/kg	160		1	
Benzo(b)fluoranthene		ND		ug/kg	120		1	
Benzo(k)fluoranthene		ND		ug/kg	120		1	
Chrysene		ND		ug/kg	120		1	
Acenaphthylene		ND		ug/kg	160		1	
Anthracene		ND		ug/kg	120		1	
Benzo(ghi)perylene		ND		ug/kg	160		1	
Fluorene		ND		ug/kg	200		1	
Phenanthrene		ND		ug/kg	120		1	
Dibenzo(a,h)anthracene		ND		ug/kg	120		1	
Indeno(1,2,3-cd)pyrene		ND		ug/kg	160		1	
Pyrene		ND		ug/kg	120		1	
Biphenyl		ND		ug/kg	440		1	
Aniline		ND		ug/kg	230		1	
4-Chloroaniline		ND		ug/kg	200		1	
1-Methylnaphthalene		ND		ug/kg	200		1	
2-Nitroaniline		ND		ug/kg	200		1	
3-Nitroaniline		ND		ug/kg	200		1	
4-Nitroaniline		ND		ug/kg	200		1	
Dibenzofuran		ND		ug/kg	200		1	
2-Methylnaphthalene		ND		ug/kg	230		1	
n-Nitrosodimethylamine		ND		ug/kg	390		1	
2,4,6-Trichlorophenol		ND		ug/kg	120		1	
p-Chloro-m-cresol		ND		ug/kg	200		1	
2-Chlorophenol		ND		ug/kg	200		1	
2,4-Dichlorophenol		ND		ug/kg	180		1	
2,4-Dimethylphenol		ND		ug/kg	200		1	
2-Nitrophenol		ND		ug/kg	420		1	
4-Nitrophenol		ND		ug/kg	270		1	
2,4-Dinitrophenol		ND		ug/kg	940		1	
4,6-Dinitro-o-cresol		ND		ug/kg	510		1	
Pentachlorophenol		ND		ug/kg	160		1	
Phenol		ND		ug/kg	200		1	
2-Methylphenol		ND		ug/kg	200		1	
3-Methylphenol/4-Methylphe	enol	ND		ug/kg	280		1	
2,4,5-Trichlorophenol		ND		ug/kg	200		1	

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 11:45

Client ID: 1607530-B101(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/	MS - Westborough Lab						
Benzoic Acid	ND		ug/kg	630		1	
Benzyl Alcohol	ND		ug/kg	200		1	
Carbazole	ND		ug/kg	200		1	
Pyridine	ND		ug/kg	780		1	

Surrogate	% Recovery	eptance riteria
2-Fluorophenol	86	25-120
Phenol-d6	89	10-120
Nitrobenzene-d5	95	23-120
2-Fluorobiphenyl	78	30-120
2,4,6-Tribromophenol	90	10-136
4-Terphenyl-d14	87	18-120

L1627010

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number:

Report Date: 09/15/16

Lab ID: L1627010-06

Client ID: 1607530-B101(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 09/02/16 07:00

Analyst: K۷ 81% Percent Solids:

Date Collected: 08/26/16 12:00 Date Received: 08/29/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 08/31/16 00:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acenaphthene	ND		ug/kg	160		1
Benzidine	ND		ug/kg	660		1
1,2,4-Trichlorobenzene	ND		ug/kg	200		1
Hexachlorobenzene	ND		ug/kg	120		1
Bis(2-chloroethyl)ether	ND		ug/kg	180		1
2-Chloronaphthalene	ND		ug/kg	200		1
1,2-Dichlorobenzene	ND		ug/kg	200		1
1,3-Dichlorobenzene	ND		ug/kg	200		1
1,4-Dichlorobenzene	ND		ug/kg	200		1
3,3'-Dichlorobenzidine	ND		ug/kg	200		1
2,4-Dinitrotoluene	ND		ug/kg	200		1
2,6-Dinitrotoluene	ND		ug/kg	200		1
Azobenzene	ND		ug/kg	200		1
Fluoranthene	ND		ug/kg	120		1
4-Chlorophenyl phenyl ether	ND		ug/kg	200		1
4-Bromophenyl phenyl ether	ND		ug/kg	200		1
Bis(2-chloroisopropyl)ether	ND		ug/kg	240		1
Bis(2-chloroethoxy)methane	ND		ug/kg	220		1
Hexachlorobutadiene	ND		ug/kg	200		1
Hexachlorocyclopentadiene	ND		ug/kg	580		1
Hexachloroethane	ND		ug/kg	160		1
Isophorone	ND		ug/kg	180		1
Naphthalene	ND		ug/kg	200		1
Nitrobenzene	ND		ug/kg	180		1
NDPA/DPA	ND		ug/kg	160		1
n-Nitrosodi-n-propylamine	ND		ug/kg	200		1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	200		1
Butyl benzyl phthalate	ND		ug/kg	200		1
Di-n-butylphthalate	ND		ug/kg	200		1
Di-n-octylphthalate	ND		ug/kg	200		1

L1627010

09/15/16

Project Name: EVERSOURCE NH SRP

L1627010-06

1607530-B101(S3-S4)

NEWINGTON, NH

Project Number: 1607530

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 08/26/16 12:00

Date Received: 08/29/16

Lab Number:

Report Date:

Field Prep: Not Specified

	N, INII			i iciu i ic	ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - '	Westborough Lab					
Diethyl phthalate	ND		ug/kg	200		1
Dimethyl phthalate	ND		ug/kg	200		1
Benzo(a)anthracene	ND		ug/kg	120		1
Benzo(a)pyrene	ND		ug/kg	160		1
Benzo(b)fluoranthene	ND		ug/kg	120		1
Benzo(k)fluoranthene	ND		ug/kg	120		1
Chrysene	ND		ug/kg	120		1
Acenaphthylene	ND		ug/kg	160		1
Anthracene	ND		ug/kg	120		1
Benzo(ghi)perylene	ND		ug/kg	160		1
Fluorene	ND		ug/kg	200		1
Phenanthrene	ND		ug/kg	120		1
Dibenzo(a,h)anthracene	ND		ug/kg	120		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160		1
Pyrene	ND		ug/kg	120		1
Biphenyl	ND		ug/kg	460		1
Aniline	ND		ug/kg	240		1
4-Chloroaniline	ND		ug/kg	200		1
1-Methylnaphthalene	ND		ug/kg	200		1
2-Nitroaniline	ND		ug/kg	200		1
3-Nitroaniline	ND		ug/kg	200		1
4-Nitroaniline	ND		ug/kg	200		1
Dibenzofuran	ND		ug/kg	200		1
2-Methylnaphthalene	ND		ug/kg	240		1
n-Nitrosodimethylamine	ND		ug/kg	400		1
2,4,6-Trichlorophenol	ND		ug/kg	120		1
p-Chloro-m-cresol	ND		ug/kg	200		1
2-Chlorophenol	ND		ug/kg	200		1
2,4-Dichlorophenol	ND		ug/kg	180		1
2,4-Dimethylphenol	ND		ug/kg	200		1
2-Nitrophenol	ND		ug/kg	440		1
4-Nitrophenol	ND		ug/kg	280		1
2,4-Dinitrophenol	ND		ug/kg	970		1
4,6-Dinitro-o-cresol	ND		ug/kg	520		1
Pentachlorophenol	ND		ug/kg	160		1
Phenol	ND		ug/kg	200		1
2-Methylphenol	ND		ug/kg	200		1
3-Methylphenol/4-Methylphenol	ND		ug/kg	290		1
2,4,5-Trichlorophenol	ND		ug/kg	200		1
			-			

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 12:00

Client ID: 1607530-B101(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/I	MS - Westborough Lab						
Benzoic Acid	ND		ug/kg	650		1	
Benzyl Alcohol	ND		ug/kg	200		1	
Carbazole	ND		ug/kg	200		1	
Pyridine	ND		ug/kg	810		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	111		25-120	
Phenol-d6	115		10-120	
Nitrobenzene-d5	120		23-120	
2-Fluorobiphenyl	92		30-120	
2,4,6-Tribromophenol	92		10-136	
4-Terphenyl-d14	90		18-120	

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

Report Date: 09/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/02/16 03:36

Analyst: KV

Extraction Method: EPA 3546 Extraction Date: 08/31/16 00:26

arameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	sample(s):	01-06	Batch:	WG927494-1
Acenaphthene	ND		ug/kg	130		
Benzidine	ND		ug/kg	540		
1,2,4-Trichlorobenzene	ND		ug/kg	160		
Hexachlorobenzene	ND		ug/kg	98		
Bis(2-chloroethyl)ether	ND		ug/kg	150		
2-Chloronaphthalene	ND		ug/kg	160		
1,2-Dichlorobenzene	ND		ug/kg	160		
1,3-Dichlorobenzene	ND		ug/kg	160		
1,4-Dichlorobenzene	ND		ug/kg	160		
3,3'-Dichlorobenzidine	ND		ug/kg	160		
2,4-Dinitrotoluene	ND		ug/kg	160		
2,6-Dinitrotoluene	ND		ug/kg	160		
Azobenzene	ND		ug/kg	160		
Fluoranthene	ND		ug/kg	98		
4-Chlorophenyl phenyl ether	ND		ug/kg	160		
4-Bromophenyl phenyl ether	ND		ug/kg	160		
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		
Bis(2-chloroethoxy)methane	ND		ug/kg	180		
Hexachlorobutadiene	ND		ug/kg	160		
Hexachlorocyclopentadiene	ND		ug/kg	470		
Hexachloroethane	ND		ug/kg	130		
Isophorone	ND		ug/kg	150		
Naphthalene	ND		ug/kg	160		
Nitrobenzene	ND		ug/kg	150		
NDPA/DPA	ND		ug/kg	130		
n-Nitrosodi-n-propylamine	ND		ug/kg	160		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		
Butyl benzyl phthalate	ND		ug/kg	160		
Di-n-butylphthalate	ND		ug/kg	160		

L1627010

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 **Report Date:** 09/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 09/02/16 03:36 Extraction Date: 08/31/16 00:26

Analyst: KV

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-06	Batch:	WG927494-1
Di-n-octylphthalate	ND		ug/kg	160		
Diethyl phthalate	ND		ug/kg	160		
Dimethyl phthalate	ND		ug/kg	160		
Benzo(a)anthracene	ND		ug/kg	98		
Benzo(a)pyrene	ND		ug/kg	130		
Benzo(b)fluoranthene	ND		ug/kg	98		
Benzo(k)fluoranthene	ND		ug/kg	98		
Chrysene	ND		ug/kg	98		
Acenaphthylene	ND		ug/kg	130		
Anthracene	ND		ug/kg	98		
Benzo(ghi)perylene	ND		ug/kg	130		
Fluorene	ND		ug/kg	160		
Phenanthrene	ND		ug/kg	98		
Dibenzo(a,h)anthracene	ND		ug/kg	98		
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		
Pyrene	ND		ug/kg	98		
Biphenyl	ND		ug/kg	370		
Aniline	ND		ug/kg	200		
4-Chloroaniline	ND		ug/kg	160		
1-Methylnaphthalene	ND		ug/kg	160		
2-Nitroaniline	ND		ug/kg	160		
3-Nitroaniline	ND		ug/kg	160		
4-Nitroaniline	ND		ug/kg	160		
Dibenzofuran	ND		ug/kg	160		
2-Methylnaphthalene	ND		ug/kg	200		
n-Nitrosodimethylamine	ND		ug/kg	330		
2,4,6-Trichlorophenol	ND		ug/kg	98		
p-Chloro-m-cresol	ND		ug/kg	160		
2-Chlorophenol	ND		ug/kg	160		

L1627010

08/31/16 00:26

Lab Number:

Extraction Date:

Project Name: EVERSOURCE NH SRP

2,4,5-Trichlorophenol

Benzoic Acid

Carbazole

Pyridine

Benzyl Alcohol

09/02/16 03:36

Project Number: 1607530 **Report Date:** 09/15/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546

Analyst: KV

Analytical Date:

rameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	01-06	Batch:	WG927494-1
2,4-Dichlorophenol	ND		ug/kg	150		
2,4-Dimethylphenol	ND		ug/kg	160		
2-Nitrophenol	ND		ug/kg	350		
4-Nitrophenol	ND		ug/kg	230		
2,4-Dinitrophenol	ND		ug/kg	780		
4,6-Dinitro-o-cresol	ND		ug/kg	420		
Pentachlorophenol	ND		ug/kg	130		
Phenol	ND		ug/kg	160		
2-Methylphenol	ND		ug/kg	160		
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

160

530

160

160

650

--

--

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	71	25-120
Phenol-d6	71	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	61	30-120
2,4,6-Tribromophenol	64	10-136
4-Terphenyl-d14	67	18-120

ND

ND

ND

ND

ND

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

rameter	LCS %Recovery	Qual	LCSD %Recover	ry	9 Qual	6Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbo	rough Lab Associ	iated sample(s):	01-06 E	Batch:	WG927494	-2 WG927494	1-3		
Acenaphthene	74		75			31-137	1		50
Benzidine	52		47			10-66	10		50
1,2,4-Trichlorobenzene	73		82			38-107	12		50
Hexachlorobenzene	74		74			40-140	0		50
Bis(2-chloroethyl)ether	75		85			40-140	13		50
2-Chloronaphthalene	74		75			40-140	1		50
1,2-Dichlorobenzene	69		83			40-140	18		50
1,3-Dichlorobenzene	67		80			40-140	18		50
1,4-Dichlorobenzene	68		82			28-104	19		50
3,3'-Dichlorobenzidine	82		76			40-140	8		50
2,4-Dinitrotoluene	96	Q	93		Q	28-89	3		50
2,6-Dinitrotoluene	83		84			40-140	1		50
Azobenzene	76		77			40-140	1		50
Fluoranthene	80		77			40-140	4		50
4-Chlorophenyl phenyl ether	75		75			40-140	0		50
4-Bromophenyl phenyl ether	74		75			40-140	1		50
Bis(2-chloroisopropyl)ether	73		80			40-140	9		50
Bis(2-chloroethoxy)methane	77		84			40-117	9		50
Hexachlorobutadiene	71		77			40-140	8		50
Hexachlorocyclopentadiene	89		93			40-140	4		50
Hexachloroethane	73		88			40-140	19		50

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Rec Qual Lin	-	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Assoc	iated sample(s):	01-06 Ba	tch: WG927494-2 W	VG927494-3	
Isophorone	82		89	40-1	8	50
Naphthalene	73		79	40-1	8	50
Nitrobenzene	89		100	40-1	140 12	50
NDPA/DPA	76		77	36-1	157 1	50
n-Nitrosodi-n-propylamine	86		92	32-1	7	50
Bis(2-ethylhexyl)phthalate	88		84	40-1	140 5	50
Butyl benzyl phthalate	95		91	40-1	4	50
Di-n-butylphthalate	89		85	40-1	140 5	50
Di-n-octylphthalate	98		95	40-1	3	50
Diethyl phthalate	82		79	40-1	40 4	50
Dimethyl phthalate	83		81	40-1	2	50
Benzo(a)anthracene	79		77	40-1	3	50
Benzo(a)pyrene	86		84	40-1	2	50
Benzo(b)fluoranthene	81		80	40-1	140	50
Benzo(k)fluoranthene	81		75	40-1	140 8	50
Chrysene	76		74	40-1	3	50
Acenaphthylene	80		81	40-1	140 1	50
Anthracene	81		80	40-1	140 1	50
Benzo(ghi)perylene	82		80	40-1	140 2	50
Fluorene	77		77	40-1	0	50
Phenanthrene	72		72	40-1	140 0	50

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Wes	tborough Lab Associ	ated sample(s):	01-06 Batc	h: WG927494-2 WG927494-	3	
Dibenzo(a,h)anthracene	84		83	40-140	1	50
Indeno(1,2,3-cd)pyrene	84		83	40-140	1	50
Pyrene	77		74	35-142	4	50
Biphenyl	80		81	54-104	1	50
Aniline	64		69	40-140	8	50
4-Chloroaniline	66		74	40-140	11	50
1-Methylnaphthalene	72		78	26-130	8	50
2-Nitroaniline	91		91	47-134	0	50
3-Nitroaniline	84		79	26-129	6	50
4-Nitroaniline	86		83	41-125	4	50
Dibenzofuran	75		76	40-140	1	50
2-Methylnaphthalene	74		78	40-140	5	50
1,2,4,5-Tetrachlorobenzene	75		80	40-117	6	50
Acetophenone	83		91	14-144	9	50
n-Nitrosodimethylamine	69		83	22-100	18	50
2,4,6-Trichlorophenol	84		83	30-130	1	50
p-Chloro-m-cresol	90		91	26-103	1	50
2-Chlorophenol	87		99	25-102	13	50
2,4-Dichlorophenol	94		97	30-130	3	50
2,4-Dimethylphenol	95		105	30-130	10	50
2-Nitrophenol	113		123	30-130	8	50

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	igh Lab Assoc	iated sample(s):	01-06 I	Batch:	WG927494-2 WG927494-	-3		
4-Nitrophenol	85		83		11-114	2		50
2,4-Dinitrophenol	118		109		4-130	8		50
4,6-Dinitro-o-cresol	126		120		10-130	5		50
Pentachlorophenol	76		76		17-109	0		50
Phenol	81		90		26-90	11		50
2-Methylphenol	88		95		30-130.	8		50
3-Methylphenol/4-Methylphenol	86		91		30-130	6		50
2,4,5-Trichlorophenol	92		93		30-130	1		50
Benzoic Acid	45		45		10-110	0		50
Benzyl Alcohol	85		94		40-140	10		50
Carbazole	79		76		54-128	4		50
Pyridine	54		72		10-93	29		50
Parathion, ethyl	135		131		40-140	3		50
Atrazine	97		97		40-140	0		50
Benzaldehyde	63		75		40-140	17		50
Caprolactam	90		89		15-130	1		50
2,3,4,6-Tetrachlorophenol	88		86		40-140	2		50

09/15/16

Lab Control Sample Analysis

Project Name: EVERSOURCE NH SRP

Batch Quality Control

Lab Number: L1627010

Project Number: 1607530

Report Date:

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-06 Batch: WG927494-2 WG927494-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	%Recovery Qual	Criteria
2-Fluorophenol	86	97	25-120
Phenol-d6	87	97	10-120
Nitrobenzene-d5	95	102	23-120
2-Fluorobiphenyl	75	76	30-120
2,4,6-Tribromophenol	80	81	10-136
4-Terphenyl-d14	77	74	18-120

PETROLEUM HYDROCARBONS

L1627010

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Report Date: 09/15/16

Lab Number:

Lab ID: L1627010-01

Client ID: 1607530-B103(S1-S2) NEWINGTON, NH Sample Location:

Matrix: Soil

Analytical Method: 1,8015C(M) Analytical Date: 09/01/16 20:20

Analyst: DV 93% Percent Solids:

Date Collected: 08/26/16 09:25 Date Received: 08/29/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 08/31/16 20:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - Westb	orough Lab					
ТРН	ND		ug/kg	35500		1
IPH	ND		ug/kg	35500		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	54		40-140	

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 09:55

Client ID: 1607530-B103(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8015C(M) Extraction Date: 08/31/16 20:59

Analytical Date: 09/01/16 20:53

Analyst: DV

Percent Solids: 92%

Parameter	Result Q	ualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitat	tion - Westborough Lab				
ТРН	ND	ug/kg	34100		1
Surrogate	% Recovery	Qualifier	Acceptance Criteria		

40-140

81

o-Terphenyl

L1627010

09/15/16

Project Name: Lab Number: **EVERSOURCE NH SRP**

Project Number: 1607530

SAMPLE RESULTS

Report Date:

Lab ID: L1627010-03

Client ID: 1607530-B102(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil

Analytical Method: 1,8015C(M) Analytical Date: 09/01/16 21:25

Analyst: DV 84% Percent Solids:

Date Collected: 08/26/16 10:45 Date Received: 08/29/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 08/31/16 20:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation -	Westborough Lab					
ТРН	ND		ug/kg	39500		1
O	0/ B	01		Acceptance		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	83		40-140	

L1627010

09/15/16

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1627010-04

Client ID: 1607530-B102(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil

Analytical Method: 1,8015C(M) Analytical Date: 09/01/16 21:57

Analyst: DV Percent Solids: 79%

Date Collected: 08/26/16 11:00
Date Received: 08/29/16
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 08/31/16 20:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation	on - Westborough Lab					
TPH	ND		ug/kg	39900		1
			Δα	centance		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	78		40-140	

L1627010

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Lab Number:

Report Date: 09/15/16

Lab ID: L1627010-05

Client ID: 1607530-B101(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil

Analytical Method: 1,8015C(M) Analytical Date: 09/01/16 22:29

Analyst: DV 84% Percent Solids:

Date Collected: 08/26/16 11:45 Date Received: 08/29/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 08/31/16 20:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Petroleum Hydrocarbon Quantitation -	Westborough Lab						
ТРН	39000		ug/kg	37500		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	82		40-140	

L1627010

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Report Date: 09/15/16

Lab Number:

Lab ID: L1627010-06

Client ID: 1607530-B101(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil

Analytical Method: 1,8015C(M) Analytical Date: 09/01/16 23:01

Analyst: DV 81% Percent Solids:

Date Collected: 08/26/16 12:00 Date Received: 08/29/16 Field Prep: Not Specified Extraction Method: EPA 3546 Extraction Date: 08/31/16 20:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbon Quantitation - Westb	orough Lab					
ТРН	ND		ug/kg	39800		1
			- 3- 3			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl	79		40-140	

L1627010

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 **Report Date:** 09/15/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8015C(M) 09/01/16 17:08

Analyst: SR

Extraction Method: EPA 3546
Extraction Date: 08/31/16 19:47

Parameter	Result	Qualifier	Units	RL	MDL
Petroleum Hydrocarbon Quantitation	n - Westbord	ough Lab fo	or sample(s):	01-06	Batch: WG927867-1
TPH	ND		ug/kg	33000	

		4	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
o-Terphenyl	85		40-140	

Project Name: EVERSOURCE NH SRP

Lab Number:

L1627010

Project Number: 1607530

Report Date:

09/15/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Petroleum Hydrocarbon Quantitation - Westl	oorough Lab Asso	ciated samp	ole(s): 01-06 B	atch: WG9	927867-2				
ТРН	92		-		40-140	-		40	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
o-Terphenyl	89				40-140	

PCBS

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 09:25

Client ID: 1607530-B103(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil Extraction Method: ERA 3546

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 08/31/16 18:23
Analytical Date: 09/02/16 22:16 Cleanup Method: EPA 3665A
Analyst: JA Cleanup Date: 09/01/16

Percent Solids: 93% Cleanup Method: EPA 3660B Cleanup Date: 09/01/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
PCB by GC - Westborough Lab							
Aroclor 1016	ND		ug/kg	33.9		1	Α
Aroclor 1221	ND		ug/kg	33.9		1	Α
Aroclor 1232	ND		ug/kg	33.9		1	Α
Aroclor 1242	ND		ug/kg	33.9		1	Α
Aroclor 1248	ND		ug/kg	33.9		1	Α
Aroclor 1254	ND		ug/kg	33.9		1	Α
Aroclor 1260	ND		ug/kg	33.9		1	Α
Aroclor 1262	ND		ug/kg	33.9		1	Α
Aroclor 1268	ND		ug/kg	33.9		1	Α
PCBs, Total	ND		ug/kg	33.9		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	A
Decachlorobiphenyl	67		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	75		30-150	В

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 09:55

Client ID: 1607530-B103(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 08/31/16 18:23
Analytical Date: 09/02/16 22:31 Cleanup Method: EPA 3665A
Analyst: JA Cleanup Date: 09/01/16

Percent Solids: 92% Cleanup Method: EPA 3660B Cleanup Date: 09/01/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
PCB by GC - Westborough Lab							
Aroclor 1016	ND		ug/kg	34.4		1	Α
Aroclor 1221	ND		ug/kg	34.4		1	Α
Aroclor 1232	ND		ug/kg	34.4		1	Α
Aroclor 1242	ND		ug/kg	34.4		1	Α
Aroclor 1248	ND		ug/kg	34.4		1	Α
Aroclor 1254	ND		ug/kg	34.4		1	Α
Aroclor 1260	ND		ug/kg	34.4		1	Α
Aroclor 1262	ND		ug/kg	34.4		1	Α
Aroclor 1268	ND		ug/kg	34.4		1	Α
PCBs, Total	ND		ug/kg	34.4		1	Α

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	78		30-150	Α				
Decachlorobiphenyl	82		30-150	Α				
2,4,5,6-Tetrachloro-m-xylene	82		30-150	В				
Decachlorobiphenyl	85		30-150	В				

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 10:45

Client ID: 1607530-B102(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified
Matrix: Soil Extraction Method: EPA 3546

Matrix:SoilExtraction Method: EPA 3546Analytical Method:1,8082AExtraction Date: 08/31/16 18:23Analytical Date:09/02/16 22:45Cleanup Method: EPA 3665AAnalyst:JACleanup Date: 09/01/16

Percent Solids: 84% Cleanup Method: EPA 3660B Cleanup Date: 09/01/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
PCB by GC - Westborough Lab							
			_				
Aroclor 1016	ND		ug/kg	39.1		1	Α
Aroclor 1221	ND		ug/kg	39.1		1	Α
Aroclor 1232	ND		ug/kg	39.1		1	Α
Aroclor 1242	ND		ug/kg	39.1		1	Α
Aroclor 1248	ND		ug/kg	39.1		1	Α
Aroclor 1254	ND		ug/kg	39.1		1	Α
Aroclor 1260	ND		ug/kg	39.1		1	А
Aroclor 1262	ND		ug/kg	39.1		1	А
Aroclor 1268	ND		ug/kg	39.1		1	Α
PCBs, Total	ND		ug/kg	39.1		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	А
Decachlorobiphenyl	84		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	78		30-150	В
Decachlorobiphenyl	93		30-150	В

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 11:00

Client ID: 1607530-B102(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546

Matrix:SoilExtraction Method: EPA 3546Analytical Method:1,8082AExtraction Date: 09/04/16 06:18Analytical Date:09/04/16 16:48Cleanup Method: EPA 3665AAnalyst:KEGCleanup Date: 09/04/16

Percent Solids: 79% Cleanup Method: EPA 3660B Cleanup Date: 09/04/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
PCB by GC - Westborough Lab							
Aroclor 1016	ND		ug/kg	41.5		1	Α
Aroclor 1221	ND		ug/kg	41.5		1	Α
Aroclor 1232	ND		ug/kg	41.5		1	Α
Aroclor 1242	ND		ug/kg	41.5		1	А
Aroclor 1248	ND		ug/kg	41.5		1	Α
Aroclor 1254	ND		ug/kg	41.5		1	Α
Aroclor 1260	ND		ug/kg	41.5		1	Α
Aroclor 1262	ND		ug/kg	41.5		1	Α
Aroclor 1268	ND		ug/kg	41.5		1	Α
PCBs, Total	ND		ug/kg	41.5		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	54		30-150	Α
Decachlorobiphenyl	49		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	56		30-150	В
Decachlorobiphenyl	62		30-150	В

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 11:45

Client ID: 1607530-B101(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 08/31/16 18:23
Analytical Date: 09/02/16 23:14 Cleanup Method: EPA 3665A
Analyst: JA Cleanup Date: 09/01/16

Percent Solids: 84% Cleanup Method: EPA 3660B Cleanup Date: 09/01/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
PCB by GC - Westborough Lab							
Aroclor 1016	ND		ug/kg	39.2		1	Α
Aroclor 1221	ND		ug/kg	39.2		1	Α
Aroclor 1232	ND		ug/kg	39.2		1	Α
Aroclor 1242	ND		ug/kg	39.2		1	Α
Aroclor 1248	ND		ug/kg	39.2		1	Α
Aroclor 1254	ND		ug/kg	39.2		1	Α
Aroclor 1260	ND		ug/kg	39.2		1	Α
Aroclor 1262	ND		ug/kg	39.2		1	Α
Aroclor 1268	ND		ug/kg	39.2		1	Α
PCBs, Total	ND		ug/kg	39.2		1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	89		30-150	Α
Decachlorobiphenyl	92		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	96		30-150	В
Decachlorobiphenyl	113		30-150	В

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 Report Date: 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/26/16 12:00

Client ID: 1607530-B101(S3-S4) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil Extraction Method: EPA 3546

Matrix:SoilExtraction Method: EPA 3546Analytical Method:1,8082AExtraction Date: 09/04/16 06:18Analytical Date:09/04/16 17:04Cleanup Method: EPA 3665AAnalyst:KEGCleanup Date: 09/04/16

Percent Solids: 81% Cleanup Method: EPA 3660B Cleanup Date: 09/04/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
PCB by GC - Westborough Lab							
Aroclor 1016	ND		ug/kg	40.0		1	Α
Aroclor 1221	ND		ug/kg	40.0		1	Α
Aroclor 1232	ND		ug/kg	40.0		1	Α
Aroclor 1242	ND		ug/kg	40.0		1	Α
Aroclor 1248	ND		ug/kg	40.0		1	Α
Aroclor 1254	ND		ug/kg	40.0		1	Α
Aroclor 1260	ND		ug/kg	40.0		1	Α
Aroclor 1262	ND		ug/kg	40.0		1	Α
Aroclor 1268	ND		ug/kg	40.0		1	Α
PCBs, Total	ND		ug/kg	40.0		1	Α

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	39		30-150	Α				
Decachlorobiphenyl	32		30-150	Α				
2,4,5,6-Tetrachloro-m-xylene	38		30-150	В				
Decachlorobiphenyl	43		30-150	В				

L1627010

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 **Report Date:** 09/15/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 09/02/16 21:33

Analyst: JA

Extraction Method: EPA 3546
Extraction Date: 08/31/16 18:23
Cleanup Method: EPA 3665A
Cleanup Date: 09/01/16
Cleanup Date: 09/01/16

Parameter	Result	Qualifier	Units	RL	MDL	Column
PCB by GC - Westborough Lab fo	or sample(s):	01-03,05	Batch:	WG927841-1		
Aroclor 1016	ND		ug/kg	32.6		А
Aroclor 1221	ND		ug/kg	32.6		А
Aroclor 1232	ND		ug/kg	32.6		А
Aroclor 1242	ND		ug/kg	32.6		Α
Aroclor 1248	ND		ug/kg	32.6		А
Aroclor 1254	ND		ug/kg	32.6		Α
Aroclor 1260	ND		ug/kg	32.6		Α
Aroclor 1262	ND		ug/kg	32.6		Α
Aroclor 1268	ND		ug/kg	32.6		Α
PCBs, Total	ND		ug/kg	32.6		Α

			Acceptance)
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82		30-150	Α
Decachlorobiphenyl	85		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	89		30-150	В
Decachlorobiphenyl	93		30-150	В

L1627010

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 **Report Date:** 09/15/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 09/04/16 19:10

Analyst: JA

Extraction Method: EPA 3546
Extraction Date: 09/04/16 02:28
Cleanup Method: EPA 3665A
Cleanup Date: 09/04/16
Cleanup Method: EPA 3660B
Cleanup Date: 09/04/16

Parameter	Result	Qualifier Units	s RL	MDL	Column
PCB by GC - Westborough Lab	for sample(s):	04,06 Batch:	WG928866-1		
Aroclor 1016	ND	ug/k	g 31.9		А
Aroclor 1221	ND	ug/k	g 31.9		Α
Aroclor 1232	ND	ug/k	g 31.9		А
Aroclor 1242	ND	ug/k	g 31.9		А
Aroclor 1248	ND	ug/k	g 31.9		А
Aroclor 1254	ND	ug/k	g 31.9		Α
Aroclor 1260	ND	ug/k	g 31.9		Α
Aroclor 1262	ND	ug/k	g 31.9		Α
Aroclor 1268	ND	ug/k	g 31.9		Α
PCBs, Total	ND	ug/k	g 31.9		Α

			Acceptance								
Surrogate	%Recovery	Qualifier	Criteria	Column							
2,4,5,6-Tetrachloro-m-xylene	78		30-150	Α							
Decachlorobiphenyl	74		30-150	Α							
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В							
Decachlorobiphenyl	71		30-150	В							

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
PCB by GC - Westborough Lab Associate	d sample(s): 01-03	3,05 Batch:	WG927841-2	WG927841-3	3				
Aroclor 1016	102		98		40-140	4		50	Α
Aroclor 1260	88		87		40-140	1		50	Α

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	94		89		30-150	Α
Decachlorobiphenyl	86		88		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	94		95		30-150	В
Decachlorobiphenyl	93		99		30-150	В

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
PCB by GC - Westborough Lab Associated	sample(s): 04,06	Batch:	WG928866-2 WG	G928866-3					
Aroclor 1016	72		75		40-140	4		50	А
Aroclor 1260	70		62		40-140	12		50	Α

LCS		LCSD		Acceptance	
%Recovery Qu		%Recovery	Qual	Criteria	Column
72		76		30-150	Α
71		73		30-150	Α
71		71		30-150	В
69		69		30-150	В
	%Recovery 72 71 71	%Recovery Qual 72 71 71	%Recovery Qual %Recovery 72 76 71 73 71 71	%Recovery Qual %Recovery Qual 72 76 73 73 71 71 71 71 71 71 71 71 72 73 74 <td>%Recovery Qual %Recovery Qual Criteria 72 76 30-150 71 73 30-150 71 71 30-150</td>	%Recovery Qual %Recovery Qual Criteria 72 76 30-150 71 73 30-150 71 71 30-150

METALS

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: L1627010-01 Date Collected: 08/26/16 09:25

Client ID: Date Received: 1607530-B103(S1-S2) 08/29/16 Field Prep: Sample Location: NEWINGTON, NH Not Specified

Matrix: Soil Percent Solids: 93%

Percent Solius.	93%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	MDL Factor Pre	Prepared	Analyzed	Method	Method	Analyst
Total Matala Man	- f : - - - -										
Total Metals - Man	stield Lab										
Arsenic, Total	9.0		mg/kg	0.42		1	08/31/16 06:40	0 08/31/16 13:28	EPA 3050B	1,6010C	PS
Barium, Total	30		mg/kg	0.42		1	08/31/16 06:40	0 08/31/16 13:28	EPA 3050B	1,6010C	PS
Cadmium, Total	ND		mg/kg	0.42		1	08/31/16 06:40	0 08/31/16 13:28	EPA 3050B	1,6010C	PS
Chromium, Total	30		mg/kg	0.42		1	08/31/16 06:40	0 08/31/16 13:28	EPA 3050B	1,6010C	PS
Lead, Total	7.2		mg/kg	2.1		1	08/31/16 06:40	0 08/31/16 13:28	EPA 3050B	1,6010C	PS
Mercury, Total	ND		mg/kg	0.07		1	08/30/16 09:00	0 08/30/16 15:06	EPA 7471B	1,7471B	BV
Selenium, Total	ND		mg/kg	0.85		1	08/31/16 06:40	0 08/31/16 13:28	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.42		1	08/31/16 06:40	0 08/31/16 13:28	EPA 3050B	1,6010C	PS

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: Report Date: 1607530 09/15/16

SAMPLE RESULTS

Lab ID: L1627010-02 Date Collected: 08/26/16 09:55

Client ID: 1607530-B103(S3-S4) Date Received: 08/29/16 Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil Percent Solids: 92%

Dilution Date Date Prep Analytical Method Method Prepared **Factor Analyzed** Result Qualifier Units RL MDL **Parameter Analyst** Total Metals - Mansfield Lab Arsenic, Total 7.1 mg/kg 0.42 1 08/31/16 06:40 08/31/16 14:39 EPA 3050B 1,6010C PS 18 1 1,6010C PS Barium, Total mg/kg 0.42 08/31/16 06:40 08/31/16 14:39 EPA 3050B 1 1,6010C PS Cadmium, Total ND 0.42 08/31/16 06:40 08/31/16 14:39 EPA 3050B mg/kg Chromium, Total 26 mg/kg 0.42 1 08/31/16 06:40 08/31/16 14:39 EPA 3050B 1,6010C PS 8.6 1 08/31/16 06:40 08/31/16 14:39 EPA 3050B 1,6010C PS Lead, Total mg/kg 2.1 Mercury, Total ND 0.07 1 08/30/16 09:00 08/30/16 15:08 EPA 7471B 1,7471B BV mg/kg Selenium, Total ND mg/kg 0.84 1 08/31/16 06:40 08/31/16 14:39 EPA 3050B 1,6010C PS Silver, Total ND mg/kg 0.42 1 08/31/16 06:40 08/31/16 14:39 EPA 3050B 1,6010C PS

08/26/16 10:45

Date Collected:

Project Name:EVERSOURCE NH SRPLab Number:L1627010Project Number:1607530Report Date:09/15/16

SAMPLE RESULTS

Lab ID: L1627010-03

Client ID: 1607530-B102(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil
Percent Solids: 84%

reiterit Solius.	04 /0					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Qualifier Units RL MDL Factor	Factor	Prepared	Analyzed	Method	Method	Analyst		
Total Metals - Man	sfield Lab										
Total Motals Mail	onoia zab										
Arsenic, Total	12		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 14:43	EPA 3050B	1,6010C	PS
Barium, Total	44		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 14:43	EPA 3050B	1,6010C	PS
Cadmium, Total	ND		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 14:43	EPA 3050B	1,6010C	PS
Chromium, Total	19		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 14:43	EPA 3050B	1,6010C	PS
Lead, Total	6.8		mg/kg	2.3		1	08/31/16 06:40	0 08/31/16 14:43	EPA 3050B	1,6010C	PS
Mercury, Total	ND		mg/kg	0.08		1	08/30/16 09:00	0 08/30/16 15:10	EPA 7471B	1,7471B	BV
Selenium, Total	ND		mg/kg	0.94		1	08/31/16 06:40	0 08/31/16 14:43	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 14:43	EPA 3050B	1,6010C	PS

Project Name: EVERSOURCE NH SRP Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: L1627010-04 Date Collected: 08/26/16 11:00

Client ID: Date Received: 08/29/16 1607530-B102(S3-S4) Field Prep: Sample Location: NEWINGTON, NH Not Specified

Matrix: Soil Percent Solids: 79%

Parameter Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	12		mg/kg	0.49		1	08/31/16 06:40	08/31/16 14:47	EPA 3050B	1,6010C	PS
Barium, Total	31		mg/kg	0.49		1	08/31/16 06:40	08/31/16 14:47	EPA 3050B	1,6010C	PS
Cadmium, Total	ND		mg/kg	0.49		1	08/31/16 06:40	08/31/16 14:47	EPA 3050B	1,6010C	PS
Chromium, Total	18		mg/kg	0.49		1	08/31/16 06:40	08/31/16 14:47	EPA 3050B	1,6010C	PS
Lead, Total	8.9		mg/kg	2.4		1	08/31/16 06:40	08/31/16 14:47	EPA 3050B	1,6010C	PS
Mercury, Total	ND		mg/kg	0.08		1	08/30/16 09:00	08/30/16 15:12	EPA 7471B	1,7471B	BV
Selenium, Total	ND		mg/kg	0.98		1	08/31/16 06:40	08/31/16 14:47	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.49		1	08/31/16 06:40	08/31/16 14:47	EPA 3050B	1,6010C	PS

08/26/16 11:45

Date Collected:

Project Name:EVERSOURCE NH SRPLab Number:L1627010Project Number:1607530Report Date:09/15/16

SAMPLE RESULTS

Lab ID: L1627010-05

Client ID: 1607530-B101(S1-S2) Date Received: 08/29/16
Sample Location: NEWINGTON, NH Field Prep: Not Specified

Matrix: Soil Percent Solids: 84%

Barium, Total 28 mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Cadmium, Total ND mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total 14 mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Lead, Total 5.7 mg/kg 2.4 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Mercury, Total ND mg/kg 0.08 1 08/30/16 09:00 08/30/16 15:19 EPA 7471B 1,7471B BV Selenium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Barium, Total 28 mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Cadmium, Total ND mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total 14 mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Lead, Total 5.7 mg/kg 2.4 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Mercury, Total ND mg/kg 0.08 1 08/30/16 09:00 08/30/16 15:19 EPA 7471B 1,7471B BV Selenium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/30/16 09:00 08/30/16 15:19 EPA 7471B 1,7471B BV Selenium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Company Total ND mg/kg 0	Total Metals - Mans	sfield Lab										
Cadmium, Total ND mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Chromium, Total 14 mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Lead, Total 5.7 mg/kg 2.4 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Mercury, Total ND mg/kg 0.08 1 08/30/16 09:00 08/30/16 15:19 EPA 7471B 1,7471B BV Selenium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS	Arsenic, Total	7.4		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 15:48	EPA 3050B	1,6010C	PS
Chromium, Total 14 mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Lead, Total 5.7 mg/kg 2.4 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Mercury, Total ND mg/kg 0.08 1 08/30/16 09:00 08/30/16 15:19 EPA 7471B 1,7471B BV Selenium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS	Barium, Total	28		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 15:48	EPA 3050B	1,6010C	PS
Lead, Total 5.7 mg/kg 2.4 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS Mercury, Total ND mg/kg 0.08 1 08/30/16 09:00 08/30/16 15:19 EPA 7471B 1,7471B BV Selenium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS	Cadmium, Total	ND		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 15:48	EPA 3050B	1,6010C	PS
Mercury, Total ND mg/kg 0.08 1 08/30/16 09:00 08/30/16 15:19 EPA 7471B 1,7471B BN Selenium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS	Chromium, Total	14		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 15:48	EPA 3050B	1,6010C	PS
Selenium, Total ND mg/kg 0.94 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS	Lead, Total	5.7		mg/kg	2.4		1	08/31/16 06:40	0 08/31/16 15:48	EPA 3050B	1,6010C	PS
	Mercury, Total	ND		mg/kg	0.08		1	08/30/16 09:00	0 08/30/16 15:19	EPA 7471B	1,7471B	BV
Silver, Total ND mg/kg 0.47 1 08/31/16 06:40 08/31/16 15:48 EPA 3050B 1,6010C PS	Selenium, Total	ND		mg/kg	0.94		1	08/31/16 06:40	0 08/31/16 15:48	EPA 3050B	1,6010C	PS
	Silver, Total	ND		mg/kg	0.47		1	08/31/16 06:40	0 08/31/16 15:48	EPA 3050B	1,6010C	PS

Project Name: Lab Number: **EVERSOURCE NH SRP** L1627010 **Report Date:**

Project Number: 1607530

09/15/16

08/26/16 12:00

SAMPLE RESULTS

Client ID: 1607530-B101(S3-S4)

L1627010-06

Sample Location: NEWINGTON, NH

Matrix: Soil

Lab ID:

Date Received: 08/29/16

Date Collected:

Field Prep: Not Specified

Percent Solids:	81%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	5.6		mg/kg	0.48		1	08/31/16 06:40	0 08/31/16 15:51	EPA 3050B	1,6010C	PS
Barium, Total	33		mg/kg	0.48		1	08/31/16 06:40	0 08/31/16 15:51	EPA 3050B	1,6010C	PS
Cadmium, Total	ND		mg/kg	0.48		1	08/31/16 06:40	08/31/16 15:51	EPA 3050B	1,6010C	PS
Chromium, Total	16		mg/kg	0.48		1	08/31/16 06:40	08/31/16 15:51	EPA 3050B	1,6010C	PS
Lead, Total	4.6		mg/kg	2.4		1	08/31/16 06:40	08/31/16 15:51	EPA 3050B	1,6010C	PS
Mercury, Total	ND		mg/kg	0.08		1	08/30/16 09:00	0 08/30/16 15:21	EPA 7471B	1,7471B	BV
Selenium, Total	ND		mg/kg	0.96		1	08/31/16 06:40	08/31/16 15:51	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.48		1	08/31/16 06:40	08/31/16 15:51	EPA 3050B	1,6010C	PS

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield Lab for sample(s): 01-06 Batch: WG927131-1									
Mercury, Total	ND	mg/kg	0.08		1	08/30/16 09:00	08/30/16 14:37	7 1,7471B	BV

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield Lab for sample(s): 01-06 Batch: WG927532-1									
Arsenic, Total	ND	mg/kg	0.40		1	08/31/16 06:40	08/31/16 14:15	1,6010C	PS
Barium, Total	ND	mg/kg	0.40		1	08/31/16 06:40	08/31/16 14:15	1,6010C	PS
Cadmium, Total	ND	mg/kg	0.40		1	08/31/16 06:40	08/31/16 14:15	1,6010C	PS
Chromium, Total	ND	mg/kg	0.40		1	08/31/16 06:40	08/31/16 14:15	1,6010C	PS
Lead, Total	ND	mg/kg	2.0		1	08/31/16 06:40	08/31/16 14:15	1,6010C	PS
Selenium, Total	ND	mg/kg	0.80		1	08/31/16 06:40	08/31/16 14:15	1,6010C	PS
Silver, Total	ND	mg/kg	0.40		1	08/31/16 06:40	08/31/16 14:15	1,6010C	PS

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

Parameter	LCS %Recovery		CSD covery <u>Qual</u>	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-06 Bato	h: WG927131-2	SRM Lot Number:	D089-540			
Mercury, Total	101		-	57-143	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-06 Bato	h: WG927532-2	SRM Lot Number:	D089-540			
Arsenic, Total	100		-	80-120	-		
Barium, Total	93		-	83-117	-		
Cadmium, Total	95		-	82-117	-		
Chromium, Total	96		-	79-121	-		
Lead, Total	95		-	81-119	-		
Selenium, Total	90		-	78-121	-		
Silver, Total	97		-	75-125	-		

L1627010

Matrix Spike Analysis Batch Quality Control

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

Report Date: 09/15/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery (Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield La	ab Associated san	nple(s): 01-06	QC Bate	ch ID: WG927	131-4	QC Samp	ole: L1626498-01	Client ID: MS	Sample	
Mercury, Total	ND	0.144	0.18	125	Q	-	-	80-120	-	20
Total Metals - Mansfield La	ab Associated san	nple(s): 01-06	QC Bate	ch ID: WG927	532-4	QC Samp	ole: L1627089-01	Client ID: MS	Sample	
Arsenic, Total	1.7	9.93	10	84		-	-	75-125	-	20
Barium, Total	25	165	150	76		-	-	75-125	-	20
Cadmium, Total	ND	4.22	2.8	66	Q	-	-	75-125	-	20
Chromium, Total	3.5	16.5	14	63	Q	-	-	75-125	-	20
Lead, Total	3.3	42.2	30	63	Q	-	-	75-125	-	20
Selenium, Total	ND	9.93	7.8	78		-	-	75-125	-	20
Silver, Total	ND	24.8	21	85		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

Parameter	Native Sample	Duplicate	e Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 0	1-06 QC Batch ID:	WG927131-3 C	QC Sample:	L1626498-01	Client ID:	DUP Sample	Э
Mercury, Total	ND	N	ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sample(s): 0	1-06 QC Batch ID:	WG927532-3 C	QC Sample:	L1627089-01	Client ID:	DUP Sample	9
Arsenic, Total	1.7	2	2.0	mg/kg	16		20
Barium, Total	25	2	29	mg/kg	15		20
Cadmium, Total	ND	N	ND	mg/kg	NC		20
Chromium, Total	3.5	4	1.4	mg/kg	23	Q	20
Lead, Total	3.3	3	3.6	mg/kg	9		20
Selenium, Total	ND	N	ND	mg/kg	NC		20
Silver, Total	ND	N	ND	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

SAMPLE RESULTS

Lab ID: L1627010-01

Client ID: 1607530-B103(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil

Date Collected:

08/26/16 09:25

Date Received: Field Prep:

08/29/16 Not Specified

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Dry Soil

Particle Size: Fine
Preliminary Burning Time (sec): 120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	s - Westborough Lab			
Ignitability	NI	08/30/16 15:55	1,1030	AB

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

SAMPLE RESULTS

Lab ID:

L1627010-02

Client ID: Sample Location:

1607530-B103(S3-S4) NEWINGTON, NH

Matrix:

Parameter

Ignitability

Soil

Date Collected:

08/26/16 09:55

Date Received: Field Prep:

08/29/16

Not Specified

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Result

NI

Ignitability of Solids - Westborough Lab

Medium

120

Preliminary Burning Time (sec):

Date Analytical Method Analyst

08/30/16 15:55 1,1030 AB

Project Name: EVERSOURCE NH SRP

Lab Number:

L1627010

Project Number: 1607530 **Report Date:**

09/15/16

SAMPLE RESULTS

Lab ID: L1627010-03

Client ID: 1607530-B102(S1-S2) Sample Location: NEWINGTON, NH

Matrix: Soil Date Collected:

08/26/16 10:45

Date Received: Field Prep:

08/29/16

Not Specified

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Dry Clay

Particle Size: Medium Preliminary Burning Time (sec): 120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	s - Westborough Lab			
Ignitability	NI	08/30/16 15:55	1,1030	AB

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

SAMPLE RESULTS

Lab ID: L1627010-04

Client ID: 1607530-B102(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil

Date Collected:

08/26/16 11:00

Date Received: Field Prep:

08/29/16

Not Specified

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Wet Clay

Particle Size: Medium
Preliminary Burning Time (sec): 120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	s - Westborough Lab			
Ignitability	NI	08/30/16 15:55	1,1030	AB

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 Lab Number:

L1627010

Report Date:

09/15/16

SAMPLE RESULTS

Lab ID:

L1627010-05

Client ID:

1607530-B101(S1-S2) Sample Location: NEWINGTON, NH

Matrix:

Soil

Date Collected:

08/26/16 11:45

Date Received:

08/29/16

Field Prep:

Not Specified

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Damp Soil

Particle Size: Medium Preliminary Burning Time (sec): 120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	s - Westborough Lab			
Ignitability	NI	08/30/16 23:45	1,1030	SB

Project Name: EVERSOURCE NH SRP

1607530

Lab Number:

L1627010

Report Date:

09/15/16

SAMPLE RESULTS

Lab ID: L1627010-06

Client ID: 1607530-B101(S3-S4) Sample Location: NEWINGTON, NH

Matrix: Soil

Project Number:

Date Collected:

08/26/16 12:00

Date Received:

08/29/16

Field Prep: Not Specified

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Damp Soil

Particle Size: Medium
Preliminary Burning Time (sec): 120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	ds - Westborough Lab			
Ignitability	NI	08/30/16 23:45	1,1030	SB

Project Name: EVERSOURCE NH SRP

Lab Number: L1627010

Project Number: 1607530 **Report Date:** 09/15/16

SAMPLE RESULTS

Lab ID: Date Collected: L1627010-01 08/26/16 09:25

1607530-B103(S1-S2) Client ID: Date Received: 08/29/16 Sample Location: NEWINGTON, NH Not Specified Field Prep:

Matrix: Soil

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lal	b							
Specific Conductance @ 25 C	ND	umhos/cm	10		1	-	08/30/16 19:35	1,9050A	AS
Solids, Total	93.3	%	0.100	NA	1	-	08/30/16 16:09	121,2540G	RI
pH (H)	5.7	SU	-	NA	1	-	08/30/16 01:30	1,9045D	MC
Cyanide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 23:01	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 22:53	1,7.3	TL
Oxidation/Reduction Potential	170	mv	-	NA	1	_	08/30/16 02:19	68,1498	MC

L1627010

Project Name: EVERSOURCE NH SRP

Lab Number:

Project Number: 1607530

Report Date: 09/15/16

SAMPLE RESULTS

Lab ID: L1627010-02 1607530-B103(S3-S4) Client ID:

Sample Location: NEWINGTON, NH

Matrix: Soil Date Collected: 08/26/16 09:55 Date Received: 08/29/16

Not Specified Field Prep:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lab)							
Specific Conductance @ 25 C	44	umhos/cm	10		1	-	08/30/16 19:35	1,9050A	AS
Solids, Total	92.4	%	0.100	NA	1	-	08/30/16 16:09	121,2540G	RI
pH (H)	7.0	SU	-	NA	1	-	08/30/16 01:30	1,9045D	MC
Cyanide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 23:01	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 22:53	1,7.3	TL
Oxidation/Reduction Potential	150	mv	-	NA	1	-	08/30/16 02:19	68,1498	MC

L1627010

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Report Date: 09/15/16

Lab Number:

SAMPLE RESULTS

Lab ID: L1627010-03

Client ID: 1607530-B102(S1-S2)

Sample Location: NEWINGTON, NH

Matrix: Soil

Date Collected: 08/26/16 10:45

Date Received: 08/29/16

Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lal	0							
Specific Conductance @ 25 C	ND	umhos/cm	10		1	-	08/30/16 19:35	1,9050A	AS
Solids, Total	83.6	%	0.100	NA	1	-	08/30/16 16:09	121,2540G	RI
pH (H)	6.3	SU	-	NA	1	-	08/30/16 01:30	1,9045D	MC
Cyanide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 23:01	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 22:53	1,7.3	TL
Oxidation/Reduction Potential	170	mv	-	NA	1	_	08/30/16 02:19	68,1498	MC

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

SAMPLE RESULTS

Lab ID: L1627010-04

Client ID: 1607530-B102(S3-S4)
Sample Location: NEWINGTON, NH

Matrix: Soil

Date Collected:

08/26/16 11:00

Date Received:

08/29/16

Field Prep:

Not Specified

Dilution Date Date Analytical Factor **Prepared** Method MDL Analyzed **Parameter** Result Qualifier Units RL **Analyst** General Chemistry - Westborough Lab Specific Conductance @ 25 C 10 1 1,9050A AS 28 umhos/cm 08/30/16 19:35 Solids, Total % 0.100 NA 1 08/30/16 16:09 121,2540G RΙ 79.2 pH (H) 7.4 SU NA 1 08/30/16 01:30 1,9045D MC TL Cyanide, Reactive ND mg/kg 10 --1 08/30/16 22:05 08/30/16 23:01 1,7.3 Sulfide, Reactive ND 10 08/30/16 22:53 1,7.3 TL mg/kg 1 08/30/16 22:05 Oxidation/Reduction Potential NA 1 68,1498 MC mν 08/30/16 02:19 190

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

SAMPLE RESULTS

Lab ID: L1627010-05

1607530-B101(S1-S2) Client ID: Sample Location: NEWINGTON, NH

Matrix:

Soil

Date Collected:

08/26/16 11:45

Date Received:

08/29/16

Field Prep:

Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	borough Lal	0							
Specific Conductance @ 25 C	ND	umhos/cm	10		1	-	08/30/16 19:35	1,9050A	AS
Solids, Total	84.2	%	0.100	NA	1	-	08/30/16 16:09	121,2540G	RI
pH (H)	6.2	SU	-	NA	1	-	08/30/16 01:30	1,9045D	MC
Cyanide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 23:02	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 22:54	1,7.3	TL
Oxidation/Reduction Potential	180	mv	-	NA	1	-	08/30/16 02:19	68,1498	МС

Project Name: EVERSOURCE NH SRP

Report Date:

Lab Number:

L1627010

Project Number: 1607530

09/15/16

SAMPLE RESULTS

Lab ID: L1627010-06 1607530-B101(S3-S4) Client ID:

Sample Location: NEWINGTON, NH

Matrix: Soil Date Collected: 08/26/16 12:00

Date Received: 08/29/16

Not Specified Field Prep:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough Lat)							
Specific Conductance @ 25 C	ND	umhos/cm	10		1	-	08/30/16 19:35	1,9050A	AS
Solids, Total	80.9	%	0.100	NA	1	-	08/30/16 16:09	121,2540G	RI
pH (H)	6.4	SU	-	NA	1	-	08/30/16 01:30	1,9045D	MC
Cyanide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 23:02	1,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 22:54	1,7.3	TL
Oxidation/Reduction Potential	170	mv	-	NA	1	-	08/30/16 02:19	68,1498	MC

L1627010

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 **Report Date:** 09/15/16

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for	sample(s): 01	-06 Ba	tch: W	G927398-1				
Cyanide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 23:00	1,7.3	TL
General Chemistry - V	Vestborough Lab for	sample(s): 01	-06 Ba	tch: W	G927400-1				
Sulfide, Reactive	ND	mg/kg	10		1	08/30/16 22:05	08/30/16 22:52	1,7.3	TL

Lab Control Sample Analysis Batch Quality Control

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1627010

Report Date:

09/15/16

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG927110-1				
рН	100	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG927111-1				
Oxidation/Reduction Potential	98	-	90-110	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG927398-2				
Cyanide, Reactive	48	-	30-125	-		40
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG927400-2				
Sulfide, Reactive	98	-	60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s): 01-06	Batch: WG927422-1				
Specific Conductance	100	-	99-101	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010 09/15/16

Report Date:

Parameter	Native	e Samp	ole D	uplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab (S2)	Associated sample(s): 0	1-06	QC Batch ID:	WG927110-2	QC Sample:	L1627010-01	Client ID:	1607530-B103(S1-
рН (Н)		5.7		5.7	SU	0		5
General Chemistry - Westborough Lab (S2)	Associated sample(s): 0	01-06	QC Batch ID:	WG927111-2	QC Sample:	L1627010-01	Client ID:	1607530-B103(S1-
Oxidation/Reduction Potential		170		170	mv	0		20
General Chemistry - Westborough Lab (S2)	Associated sample(s): 0	01-06	QC Batch ID:	WG927364-1	QC Sample:	L1627010-01	Client ID:	1607530-B103(S1-
Solids, Total	9	93.3		92.4	%	1		20
General Chemistry - Westborough Lab	Associated sample(s): 0	1-06	QC Batch ID:	WG927398-3	QC Sample:	L1627028-01	Client ID:	DUP Sample
Cyanide, Reactive		ND		ND	mg/kg	NC		40
General Chemistry - Westborough Lab	Associated sample(s): 0	1-06	QC Batch ID:	WG927400-3	QC Sample:	L1627028-01	Client ID:	DUP Sample
Sulfide, Reactive		ND		ND	mg/kg	NC		40
General Chemistry - Westborough Lab	Associated sample(s): 0	1-06	QC Batch ID:	WG927422-2	QC Sample:	L1627026-01	Client ID:	DUP Sample
Specific Conductance		74		97	umhos/cr	n 27	Q	20

Project Name: EVERSOURCE NH SRP

Lab Number: L1627010 **Report Date:** 09/15/16 Project Number: 1607530

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 08/29/2016 22:27

Cooler Information Custody Seal

Cooler

Absent Α В Absent

Container Info	Container Information Temp												
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)						
L1627010-01A	Vial MeOH preserved	Α	N/A	2.4	Υ	Absent	8260H(14)						
L1627010-01B	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)						
L1627010-01C	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)						
L1627010-01D	Metals Only - Glass 60mL/2oz unp	A	N/A	2.4	Υ	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)						
L1627010-01E	Glass 60mL/2oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)						
L1627010-01F	Glass 120ml/4oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)						
L1627010-01G	Glass 500ml/16oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)						
L1627010-01H	Plastic 250ml unpreserved	В	N/A	3.1	Υ	Absent	SUB-537()						
L1627010-01X	Glass 120ml/4oz unpreserved/No H	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()						
L1627010-02A	Vial MeOH preserved	Α	N/A	2.4	Υ	Absent	8260H(14)						
L1627010-02B	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)						
L1627010-02C	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)						
L1627010-02D	Metals Only - Glass 60mL/2oz unp	A	N/A	2.4	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)						

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010 Report Date: 09/15/16

Container Info	Container Information Temp										
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)				
L1627010-02E	Glass 60mL/2oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-02F	Glass 120ml/4oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-02G	Glass 500ml/16oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-02H	Plastic 250ml unpreserved	В	N/A	3.1	Υ	Absent	SUB-537()				
L1627010-02X	Glass 120ml/4oz unpreserved/No H	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()				
L1627010-03A	Vial MeOH preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				
L1627010-03B	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				
L1627010-03C	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				
L1627010-03D	Metals Only - Glass 60mL/2oz unp	A	N/A	2.4	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)				
L1627010-03E	Glass 60mL/2oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-03F	Glass 120ml/4oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-03G	Glass 500ml/16oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-03H	Plastic 250ml unpreserved	В	N/A	3.1	Υ	Absent	SUB-537()				
L1627010-03X	Glass 120ml/4oz unpreserved/No H	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()				
L1627010-04A	Vial MeOH preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				
L1627010-04B	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				
L1627010-04C	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010 **Report Date**: 09/15/16

Container Info	Container Information Temp										
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)				
L1627010-04D	Metals Only - Glass 60mL/2oz unp	Α	N/A	2.4	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)				
L1627010-04E	Glass 60mL/2oz unpreserved	Α	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-04F	Glass 120ml/4oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-04G	Glass 500ml/16oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-04H	Plastic 250ml unpreserved	В	N/A	3.1	Υ	Absent	SUB-537()				
L1627010-04X	Glass 120ml/4oz unpreserved/No H	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()				
L1627010-05A	Vial MeOH preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				
L1627010-05B	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				
L1627010-05C	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				
L1627010-05D	Metals Only - Glass 60mL/2oz unp	A	N/A	2.4	Υ	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)				
L1627010-05E	Glass 60mL/2oz unpreserved	Α	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-05F	Glass 120ml/4oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-05G	Glass 500ml/16oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)				
L1627010-05H	Plastic 250ml unpreserved	В	N/A	3.1	Υ	Absent	SUB-537()				
L1627010-05X	Glass 120ml/4oz unpreserved/No H	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()				
L1627010-06A	Vial MeOH preserved	Α	N/A	2.4	Υ	Absent	8260H(14)				

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1627010 **Report Date:** 09/15/16

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1627010-06B	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)
L1627010-06C	Vial water preserved	Α	N/A	2.4	Υ	Absent	8260H(14)
L1627010-06D	Metals Only - Glass 60mL/2oz unp	Α	N/A	2.4	Υ	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1627010-06E	Glass 60mL/2oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)
L1627010-06F	Glass 120ml/4oz unpreserved	A	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)
L1627010-06G	Glass 500ml/16oz unpreserved	А	N/A	2.4	Y	Absent	8270TCL(14),IGNIT- 1030(14),ORP- 9045(1),REACTS(14),PCB- 8082(14),TS(7),PH- 9045(1),REACTCN(14),TPH- DRO-D(14),COND-9050(28)
L1627010-06H	Plastic 250ml unpreserved	В	N/A	3.1	Υ	Absent	SUB-537()
L1627010-06X	Glass 120ml/4oz unpreserved/No H	Α	N/A	2.4	Υ	Absent	HEXCR-RELOG()

Project Name:EVERSOURCE NH SRPLab Number:L1627010Project Number:1607530Report Date:09/15/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:EVERSOURCE NH SRPLab Number:L1627010Project Number:1607530Report Date:09/15/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:EVERSOURCE NH SRPLab Number:L1627010Project Number:1607530Report Date:09/15/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Annual Book of ASTM (American Society for Testing and Materials) Standards following extraction by SW-846 EPA Method 9045C under the requirements of MADEP BWSC, WSC-CAM-VIB. August 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 7

Page 1 of 1

Published Date: 8/5/2016 11:25:56 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

08/29/18

L1627010

Chain-of-Custody Record						tory:		Alpha					Laboratory Job # (Lab use only)			
						Pr	oject Infor	matio	n			44.244	BIYL			(ESS)
		Project Na	me: Evers	ource NH SI	RP			Proje	ct Loc	ation:	Newi	ngton,	NH			Page 1 of 1
G	El	Project Nu	ımber: 160	7530								Sabuli ell: 50		9544)		
400 Uı	nicorn Park Drive	Send Repo	ort to:	Jess Engle	hart			. 8-6			Pr	eserva	tive			Sample Handling
Wok	ourn, MA 01801	Geria repe	it to.	Jess Engle	ilait			МеОН								
	: 781.721.4000 : 781.721.4073	Send EDD	to: labdata(@geiconsulta	ants.com			Analysis						Complete Field Filtered		
MCP PRESUM	IPTIVE CERTAINTY REQ	UIRED	YES	NO										ivity	× (if	Samples Field Filtered YES NO NA
If Yes, Are MC	P Analytical Methods Req	uired?		YES	NO	NA		1				*5	oility	Sulfide+Cyanide Reactivity	and redox (if	Sampled Shipped
If Yes, Are Drinking Water Samples Submitted? YES NO					NA				_		als +	Cond/Corr/Ignitability	jde	l and	With Ice	
If Yes, Have You Met Minimum Field QC Requirements? YES NO					NA		1		00 00		Meta	orr/lg	Cyai	/d /v (y:	YES NO	
Lab Sample	GEI Sample ID				Matrix	Matrix No. of Sampler(s)		VOC	8 8	TPH (8100M)	PCBs	RCRA 8Metals + TCLP (if necessary)*	Jq/Cc	Įde+	Hex Cr w/ pH and necessary)**	Sample Specific Remarks
Number			Date	Time		Bottles	Initials	00 V	SVC		D.	25.5	ပ်	Sult		
	1607530-B103(51-52) 8/26/11			0925	50	8	mee	X	X	X	X	×	X	X	X	4
	-8103(S3~54)			0953		1			1				1			
	Bio2(SI			1045												
	B102 (53	~54)		1100												
	Blei (Si			1175												
	Bloi (S	3-54)	V	1200	V	V	W	V	V	V	V	1	4	V	7	
12																
MCD Lavel No	eded: GEI requires the mo	at atringan	Mothed 1 N	ICD atandar	d ha mat t	or all and	lutos	ROMONIA		Turns		Time			Defere	submitting rush turnaround
whenever poss		osi siringen	i Method 1 iv	ICF Statiuali	u be met i	OI all alla	lytes					days):				es, you must notify the laboratory
Relinquished by sam	Manager State of the Control of the	Date :	Time:	Received by: (sig	gnature)				Norn	nal_X_		Other _				firm that the TAT can be achieved.
1: Melly	Then,	8/27/16	14:50	1. CTE1	Fride	e				ay		7-Day				
Relinquished by: (signature) Date: Time: Received by: (signature)								5-Da			-Day _					
2. GEI F	ridge 8/29/16 1120 2.7 (Thehear)						823		NAME OF TAXABLE PARTY.	Name and Address of the Owner, where the Owner, which the Owner, where the Owner, which the	The second second second	equir	emer	nts/Com	nments/Remarks:	
Relinquished by: (sig		Date:	Time: Received by (signature)				*Please run TCLP on analyses that exceed 20x rule.									
3. 7 File		8/29/16 1120 3 Hul free pto				PAC	**Please run Hex Cr if total Cr exceeds 100ppm. Please run ORP ASAP as it has a 24-hr hold time.									
Relinquished (sig		Date:	Time: 17:20	Received by: (sig	. / /	AA										
4. Mule	Hand on	8/28/16	11.00	4. YWW	W	-000										

08/29/16

L1627010

Chain-o	f-Custody Reco	Labora			Alpha Laboratory Job # (Lab use only)						#					
		192 PER 100			distant.	Pr	oject Infor									
15		Project Na	me: Everso	urce NH SF	RP.			Proje	ct Loc	ation: N	lewington	, NH			Page 1 of 1	
	1	Project Nu	mber: 1607	530				Project Manager: Mike Sabulis								
(-	Consultants	, , , , , , , , , , , , , , , , , , , ,					_					08-633-954	4)			
400 U	Inicorn Park Drive	Send Repo	rt to:	Jess Englel	nart						Preserv	ative		Sample Handling		
	burn, MA 01801	Cond repo		occo Englo	iart			Comp.						100		
	1: 781.721.4000	Send EDD	to: labdata@	geiconsulta	ants.com			24.15			Analy	cic		ST-12 TO 12		
FX	(: 781.721.4073										Allaly	313			Samples Field Filtered	
MCP PRESU	MPTIVE CERTAINTY REC	UIRED -	YES 1	10											YES NO NA	
If Yes, Are Mo	CP Analytical Methods Req	uired?		YES	NO	NA									Sampled Shipped	
If Yes, Are Drinking Water Samples Submitted? YES NO NA														With Ice		
If Yes, Have You Met Minimum Field QC Requirements? YES NO NA														L	YES NO	
Lab Sample	GEI Sample ID		Collec		Matrix	No. of Bottles	Sampler(s) Initials	PFOS	PFOA						Sample Specific Remarks	
Number						Bottles		_	- K					9		
	1607530-B103(SI-5		8/26/14	09,25	SO	<u> </u>	MEG	X	_	-						
	B103/33-			0955	-			-	-			+				
	3102(51-			1045				-	\vdash		_					
	B102(53-			1100							-	+ +				
	Bion (51-		,	1200			Ja	V.	1			+				
	RIOI (32	31)		1200	V	¥	V	V	V		_					
									<u> </u>						X 7995-30 X 2	
			30-1													
MCP Level N whenever pos	leeded: GEI requires the m	ost stringent	Method 1 M	CP standar	d be met f	or all ana	lytes				ound Tim ess days)				itting rush turnaround must notify the laboratory	
Relinquished by sai	impler: (signature)	Date :	Time:	Received by: (sig	gnature)				Norr	nal_X_	0.001.0010				at the TAT can be achieved.	
1. Molly	Aren	8/27/16	14:50	1.GEL	Frida	~				ay						
Relinquished by. (s		Date: Time: Received by: (signature) / /							5-Da	•	3-Day					
2 GEJ	Froise	8/29/16	1120	20 2 Collant					1119	Ac	ditional	Requirem	ents/Co	mments	s/Remarks:	
Relinquished by: (s	ignature)	Date:		Received by:	gnature)	1	1198 880									
3.	Chart	8/29/16	1120	They	1/1	Eye	AAC									
Relinquished by/(s	signature)	Date :		Received by: (sig	gnature)	10.										
4/ Male	Hayer por	8/20/14	17:20	4. Kull	10 X	WI										
						0										

September 15, 2016

Vista Work Order No. 1601099

Ms. Karyn Raymond Alpha Analytical Laboratory 8 Walkup Drive Westborough, MA 01581

Dear Ms. Raymond,

Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on August 31, 2016. This sample set was analyzed on a rush turn-around time. The SDG Number is L1627010.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier

Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

SDG Number L1627010 Vista Work Order No. 1601099 Case Narrative

Sample Condition on Receipt:

Six soil samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. This report was amended to reflect Alpha job number L1627010 rather than L1626010.

Analytical Notes:

Modified EPA Method 537

The samples were extracted and analyzed for PFOA and PFOS using Modified EPA Method 537. The results include both linear and branched isomers.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The recoveries of all internal standards in the QC and field samples were within the acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	14
Certifications	15
Sample Receipt	18

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1601099-01	1607530-B103(S1-S2)	26-Aug-16 09:25	31-Aug-16 09:33	HDPE Jar, 4 oz
1601099-02	1607530-B103(S3-S4)	26-Aug-16 09:55	31-Aug-16 09:33	HDPE Jar, 4 oz
1601099-03	1607530-B102(S1-S2)	26-Aug-16 10:45	31-Aug-16 09:33	HDPE Jar, 4 oz
1601099-04	1607530-B102(S3-S4)	26-Aug-16 11:00	31-Aug-16 09:33	HDPE Jar, 4 oz
1601099-05	1607530-B101(S1-S2)	26-Aug-16 11:45	31-Aug-16 09:33	HDPE Jar, 4 oz
1601099-06	1607530-B101(S3-S4)	26-Aug-16 12:00	31-Aug-16 09:33	HDPE Jar, 4 oz

Vista Project: 1601099

ANALYTICAL RESULTS

Sample ID:	Method Blank							VA	L - PFAS
Matrix: Sample Size:	Solid 1.00 g	QC Batch: B6I00 Date Extracted: 08-Se			1	B6I0041-BLK1 12-Sep-16 19:47	Column: BEH	C18 Analyst: A	.C
Analyte	Conc. (ng/g)	RL	Qualifiers]	Labeled Stand	dard	%R	LCL-UCL	Qualifiers
PFOA PFOS	ND ND	2.00 2.00		IS IS	13C2-PFO. 13C8-PFO		124 109	60 - 150 60 - 150	

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight

The sample size is reported in wet weight

Results reported to RL

When reported, PFBS, PFHxS and PFOS include both linear and branched isomers Only

the linear isomer is reported for all other analytes

Sample ID: OPR								VAL - PFAS
Matrix: Solid Sample Size: 1.00 g	QC Batch: Date Extracted	B6I0041 l: 08-Sep-2010	5 14:54		Lab Sample Date Analyz		n: BEH C18 Analyst: AC	
Analyte	Amt Found (ng/g)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
PFOA	9.89	10.0	98.9	70 - 130	IS	13C2-PFOA	123	60 - 150
PFOS	10.7	10.0	107	70 - 130	IS	13C8-PFOS	105	60 - 150

LCL-UCL - Lower control limit - upper control limit

Sample ID:	1607530-B103(S1-S2)							VA	L - PFAS
Client Data Name: Project: Date Collected:	Alpha Analytical La	,	Sample Data Matrix: Sample Size: % Solids:	Soil 1.46 g 71.0		Laborator Lab San QC Bate Date An	ple: 1601099-01	Date Received: Date Extracted:	08-Sep-201	
Analyte	Conc. (ng/g)	RL			Qualifi		Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.93				IS	13C2-PFOA	137	60 - 150	
PFOS	ND	1.93				IS	13C8-PFOS	76.3	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight

The sample size is reported in wet weight

Results reported to RL

When reported, PFBS, PFHxS and PFOS include both linear and branched isomers Only the

Sample ID:	1607530-B103(S3-S4)							VA	L - PFAS
Client Data			Sample Data		L	aboratory	y Data			
Name:	Alpha Analytical La	boratory	Matrix:	Soil	1	Lab Samp	de: 1601099-02	Date Received:	31-Aug-20	16 9:33
Project:			Sample Size:	1.23 g	I .	QC Batch	: B6I0041	Date Extracted	: 08-Sep-201	6 14:54
Date Collected:	26-Aug-2016 9:55		% Solids:	80.4	1	Date Anal	yzed: 13-Sep-16 03:09 Colu	mn: BEH C18 Ana	alyst: AC	
Analyte	Conc. (ng/g)	RL			Qualifie	rs	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	2.02			_	IS	13C2-PFOA	130	60 - 150	
PFOS	ND	2.02				IS	13C8-PFOS	81.7	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight

The sample size is reported in wet weight

Results reported to RL

When reported, PFBS, PFHxS and PFOS include both linear and branched isomers Only the

Sample ID:	1607530-B102(S	S1-S2)							VA	L - PFAS
Client Data			Sample Data		L	aborator	y Data			
Name:	Alpha Analytical Lab	ooratory	Matrix:	Soil	1	Lab Samp	le: 1601099-03	Date Received:	31-Aug-201	16 9:33
Project:			Sample Size:	1.37 g		QC Batch	: B6I0041	Date Extracted:	08-Sep-201	6 14:54
Date Collected:	26-Aug-2016 10:45		% Solids:	75.0	1	Date Anal	yzed: 13-Sep-16 03:21 Colu	mn: BEH C18 Ana	lyst: AC	
Analyte	Conc. (ng/g)	RL			Qualifie	rs	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.95	_			IS	13C2-PFOA	150	60 - 150	
PFOS	ND	1.95				IS	13C8-PFOS	99.6	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight

The sample size is reported in wet weight

Results reported to RL

When reported, PFBS, PFHxS and PFOS include both linear and branched isomers Only the

Sample ID:	1607530-B102(S	S3-S4)							VA	L - PFAS
Client Data			Sample Data		La	aborator	y Data			
Name:	Alpha Analytical Lab	ooratory	Matrix:	Soil	1	Lab Samp	ole: 1601099-04	Date Received:	31-Aug-201	16 9:33
Project:			Sample Size:	1.36 g	(QC Batch	: B6I0041	Date Extracted:	08-Sep-201	6 14:54
Date Collected:	26-Aug-2016 11:00		% Solids:	75.3	1	Date Anal	lyzed: 13-Sep-16 03:34 Colum	mn: BEH C18 Ana	lyst: AC	
Analyte	Conc. (ng/g)	RL			Qualifier	rs	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.95				IS	13C2-PFOA	141	60 - 150	
PFOS	ND	1.95				IS	13C8-PFOS	108	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight

The sample size is reported in wet weight

Results reported to RL

When reported, PFBS, PFHxS and PFOS include both linear and branched isomers Only the

Sample ID:	1607530-B101(S	S1-S2)							VA	L - PFAS
Client Data			Sample Data		La	aboratory	Data Data			
Name:	Alpha Analytical Lab	oratory	Matrix:	Soil	1	Lab Samp	le: 1601099-05	Date Received:	31-Aug-201	16 9:33
Project:			Sample Size:	1.38 g		QC Batch	: B6I0041	Date Extracted:	08-Sep-201	6 14:54
Date Collected:	26-Aug-2016 11:45		% Solids:	74.1	1	Date Anal	yzed: 13-Sep-16 03:47 Colu	mn: BEH C18 Ana	lyst: AC	
Analyte	Conc. (ng/g)	RL			Qualifier	'S	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.96				IS	13C2-PFOA	135	60 - 150	
PFOS	ND	1.96				IS	13C8-PFOS	103	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight

The sample size is reported in wet weight

Results reported to RL

When reported, PFBS, PFHxS and PFOS include both linear and branched isomers Only the

Sample ID:	1607530-B101(S3-S4)							VA	L - PFAS
Client Data			Sample Data		L	aboratory	y Data			
Name:	Alpha Analytical Lal	ooratory	Matrix:	Soil]	Lab Samp	le: 1601099-06	Date Received:	31-Aug-20	16 9:33
Project:			Sample Size:	1.30 g		QC Batch	: B6I0041	Date Extracted	08-Sep-201	6 14:54
Date Collected:	26-Aug-2016 12:00		% Solids:	78.5	1	Date Anal	yzed: 13-Sep-16 03:59 Col	umn: BEH C18 Ana	lyst: AC	
Analyte	Conc. (ng/g)	RL			Qualifie	rs	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	1.96				IS	13C2-PFOA	148	60 - 150	
PFOS	ND	1.96				IS	13C8-PFOS	98.0	60 - 150	

LCL-UCL - Lower control limit - upper control limit

The results are reported in dry weight

The sample size is reported in wet weight

Results reported to RL

When reported, PFBS, PFHxS and PFOS include both linear and branched isomers Only the

DATA QUALIFIERS & ABBREVIATIONS

В	This compound	was also	detected in	the method blank.
---	---------------	----------	-------------	-------------------

D Dilution

E The associated compound concentration exceeded the calibration range of

the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Reporting Limit/LOQ.

* See Cover Letter

Conc. Concentration

NA Not applicable

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2014022
Nevada Division of Environmental Protection	CA004132015-1
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-004
Pennsylvania Department of Environmental Protection	012
South Carolina Department of Health	87002001
Texas Commission on Environmental Quality	T104704189-15-6
Virginia Department of General Services	7923
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water						
Description of Test	Method					
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Date Recein Lab	SUB UPS:	Vista Labs (CA)										11/	20	10	0,0	2	ı	.600	٥	
PAX		CHAIN OF	CUSTO	DY	PAGE O	F	Da	te Rec'd	in Lab	ali	BAD	1	6			Old Mile		7 10 20		
Project Name:	ALPH	TICAL	Project Info	rmation			Re	port l	nforn	natio	n Dai	a Del	livera	bles	Bil	ling I	nforn	nation		
Act Debrevations Act D	Westborough, MA	Mansfield, MA	5 : (1)					FAX				EMAIL	5							
Project Location: NH			Project Name:					ADEx				Add'l E	Delivera	ables						
Client Ajbna Analytical Lab Address & Walkup Drive Project ## Address & Walkup Drive Project ## Address & Walkup Drive Project ## ADPHA Quote #: 380 Phone: 508 698-9220 Turn-Around Tirne Fax: Siandard Rush (ONLY IF PRE APPROVED) ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS Cher Project Specific Requirements/Comments/Detection Limits: Please reference Alpha Job #t. 162/2010 on this report. 61 40 PFOS only ADPHA Lab ID (Lab Use Only) ADPHA Lab ID (1607530-B103(\$1-52) B20616 0925 Soil X X 1607530-B103(\$3-54) 1607530-B103(\$3-54) 1607530-B103(\$3-52) B20616 1145 Soil X X 1607530-B101(\$3-52) B20616 1145 Soil X X B20616 B101(\$3-52) B20616 B101(\$3-52) B20616 B101(\$3-52) B20616			Project Location	on: NH							emer	its/Re	port	Limit						
Vest No. A per MCP Pranty (last Nethous Regulared? Vest No. A per MCP Analystical Nethous Regulared? Vest No. A per MCP Analystical Nethous Regulared? Vest No. A per MCP (Reasonable Confidence Protocole) Required? ANALYSIS No. A per CT RCP (Reasonable Confidence Protocole) Required? ANALYSIS No. A per CT RCP (Reasonable Confidence Protocole) Required? ANALYSIS No. A per CT RCP (Reasonable Confidence Protocole) Requirements (Policy of Principles Specific Requir	Client: Alpha Analy	ytical Lab	Project #:				Sta	te/Fea P	rogran	7					Crite	eria				
Yes No Are MCP Analytical Methods Regulared? Yes No Are MCP Analytical Methods Regulared? Yes No Are MCP Analytical Methods Regulared? Yes No Are CT RCP (Reasonable Confidence Protocols) Required? No Are CT RCP (Reasonable Confidence Protocols) Required Protocols Required Pr	Address: 8 Walkup	Drive Drive	Project Manag	er: Karvn R	avmond	21	MC	P PRI	ESUN	/IPTI\	/E CE	RTAI	NTY-	CT R	EASC	DNAE	LE C	ONFI	DENCE PROTOCO	DL S
Flox	Westborough, Ma	01581					7_0	Yes		☐ No		Are	MCP A	Analytic	al Meth	nods R	equired	1?		7-7-
Fax:	Phone: 508-898-92	220	Turn-Around	d Time						∐ No		Are	CTRO	P (Rea	asonabl	le Conf	idence	Protoco	ls) Required?	٦
Email: subreports@alphalab.com	Fax:			100000000000000000000000000000000000000	Rush (ONLY IE P	PE-APPROVED:	AN	ALTS	13	T	T	T	T	1	T -	Т	T		SAMPLE HANDLING	o T
These samples have been Previously analyzed by Alpha Due Date Time	Email: subreports@	Dalphalab.com	14 Day TAT		tuon (one) ii i	NE ALTROVED)														A L
Cher Project Specific Requirements/Comments/Detection Limits: Please reference Alpha Job #L 1627010 on this report.	These samples have	been Previously analyzed by Alpha		Time:																#
Please reference Alpha Job #L1627010 on this report. S37-PFOA and PFOS only			nts/Detection Lim	its:			-													В
ALPHA Lab ID (Lab Use Only) Date Time Matrix Initials Equation Sample Sampler's Initials Equation Sample Sampler's	Please reference A	Alpha Job #L1627010 on this re															1		10.500,000.000.000.000.000.000.000.000	T
ALPHA Lab ID (Lab Use Only) Date Time Matrix Initials ES	537-PFO	A and PFOS only																		L E
Clab Use Only Date Time Matrix Initials E Sample Specific Sample Sa																				S
Date Time Matrix Initials Example Specific Sample Sam	ALPHA Lab ID	Sample ID	Col	lection	Sample	Sampler's	1		**											
1607530-B103(S1-S2)	(Lab Use Only)		Date	Time	Matrix															
1607530-B103(S3-S4)		Т	· ·		T	1	53													
1607530-B102(S1-S2)		1607530-B103(S1-S2)	8/26/16	09:25	Soil		х													1
1607530-B102(S3-S4)		1607530-B103(S3-S4)	8/26/16	09:55	Soil		X													1
1607530-B101(S1-S2) 1607530-B101(S3-S4) 12:00 Soil X 1007530-B101(S3-S4)			8/26/16	10:45	Soil		X													1
1607530-B101(S3-S4) 8/26/16 12:00 Soil X 1 Container Type P Preservative A Preservative A Preservative A SYOUR PROJECT Relinquished By: Date/Time Received By: Received By: Date/Time Received By: Received By: Date/Time Received By: Date/Time Received By: Date/Time Received By:			8/26/16	11:00	Soil		X													1
PLEASE ANSWER QUESTIONS ABOVE! Container Type P Preservative A Please print clearly, legibly and completely. Samples can not be logged in and unaround time clock will not start until any ambiguities are resolved. All samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples are resolved.				11:45	Soil		X													1
Preservative A Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to		1607530-B101(S3-S4)	8/26/16	12:00	Soil	-	X													1
Preservative A Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to						+									-					
Preservative A Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to						+			7								-	-		_
Preservative A Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to																-	-			_
Preservative A Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. All samples submitted are subject to	DI FASE ANSWER	DUESTIONS AROVE			Con	eta in a v Tura	D					-					-			
S YOUR PROJECT Relinquished By: Date/Time Received By: Date/Time Date/Time Date/Time Received By: Date/Time Start until any ambiguities are resolved. Apr. Preservative A Date/Time Date/Time Date/Time Start until any ambiguities are resolved. Apr. Date/Time Date/Date/Date/Date/Date/Date/Date/Date/	LLAGE AROTTER	golo Hono Abotl:			-						0.50	-			ļ.		ļ		Please print clearly, legib	ly .
MA MCP or CT RCP? ARC 8/30/16 MAKER 13/01/16	0 1/01/5					Preservative	^				-	-	-	10.75		-	-		and completely. Samples not be logged in and	can
			10	Relin	1	1.0.				0	1 Su	Receiv	ed By:	,		Da /	ate/Tin	ne	start until any ambiguities	
	MA MCP ORM NO: 01-01(I) rev: 30-Jul07)	or CTRCP?		la la	2	446	2/30/1	6		CAA.	ALA	MU	UN		(3/3/	116	093		

Page 135 of 136

SAMPLE LOG-IN CHECKLIST

Vista Apalytical Laboratory
211
TAT_U

Vista Project #:	1601	099			TAT	Sta	Ajdiytical	
Samples Arrival:	Date/Time 08/31/16	0933	Initials:	B	Locati Shelf/F	on: W	DR- UA	2
Logged In:	Date/Time	-	on: WR-7 dack: A5					
Delivered By:	Hand elivered	Oth	ner					
Preservation:		None						
Temp °C: \. (ometer II) : IR-	1					
						YES	NO	NA
Adequate Sample \	Volume Receive	d?	process and the second					
Holding Time Acce	ptable?							
Shipping Container	(s) Intact?					V		
Shipping Custody S	Seals Intact?							V
Shipping Documen	tation Present?					V		
Airbill	Trk# 12 1	= 3065	40193	8420	182	V		
Sample Container I	n							
Sample Custody Se	eals Intact?							
Chain of Custody /	Sample Docume	entation Pres	sent?					
COC Anomaly/Sam	iple Acceptance	Form comp	leted?					
If Chlorinated or Dr	inking Water Sa	mples, Acce	ptable Pre	eservatio	n?			

COC

Client

Vista

Comments:

Shipping Container

None

Dispose

Sample

Container

Retain

Return

Na₂S₂O₃ Preservation Documented?

September 15, 2016

Vista Work Order No. 1601114

Ms. Karyn Raymond Alpha Analytical Laboratory 8 Walkup Drive Westborough, MA 01581

Dear Ms. Raymond,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on September 03, 2016. This sample set was analyzed on a rush turn-around time. The SDG Number is L1627653.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfeld Way El Dorado Hills , CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1601114 Page 1 of 16

SDG Number L1627653 Vista Work Order No. 1601114 Case Narrative

Sample Condition on Receipt:

Three water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

The samples were extracted and analyzed for PFOA and PFOS using Modified EPA Method 537. The results include both linear and branched isomers.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The recoveries of all internal standards in the QC and field samples were within the acceptance criteria.

Work Order 1601114 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents.	3
Sample Inventory	4
Analytical Results	5
Qualifiers	11
Certifications.	12
Sample Receipt.	15

Work Order 1601114 Page 3 of 16

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1601114-01	1607530-B101 (MW)	01-Sep-16 10:00	03-Sep-16 09:45	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1601114-02	1607530-B102 (MW)	01-Sep-16 10:10	03-Sep-16 09:45	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1601114-03	1607530-SW1	01-Sep-16 10:35	03-Sep-16 09:45	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

Vista Project: 1601114 Client Project: GEI EVS

Work Order 1601114 Page 4 of 16

ANALYTICAL RESULTS

Work Order 1601114 Page 5 of 16

Sample ID	: Method Blank							Modif	ied EPA Mo	ethod 537
Matrix: Sample Size:	Aqueous 0.125 L	QC Batch: Date Extracted:	B6I0058 13-Sep-2016 7:28			o Sample: te Analyzed:	B6I0058-BLK1 13-Sep-16 17:52	Column: BEH	C18 Analyst: A	C
Analyte	Conc. (ng/L)	RL		Qualifiers	:	Labeled Stan	dard	%R	LCL-UCL	Qualifiers
PFOA PFOS	ND ND	8.00 8.00			IS IS	13C2-PFO 13C8-PFO		92.7 88.3	60 - 150 60 - 150	

LCL-UCL - Lower control limit - upper control limit Results reported to RL

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1601114 Page 6 of 16

Sample ID: OPR							Modified	EPA Method 537
Matrix: Aqueous Sample Size: 0.125 L	QC Batch: Date Extracted	B6I0058	5 7:28		Lab Samp Date Anal		n: BEH C18 Analyst: A	.c
Analyte	Amt Found (ng/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
PFOA	73.9	80.0	92.4	70 - 130	IS	13C2-PFOA	104	60 - 150
PFOS	79.1	80.0	98.9	70 - 130	IS	13C8-PFOS	90.7	60 - 150

LCL-UCL - Lower control limit - upper control limit

Work Order 1601114 Page 7 of 16

Sample ID:	1607530-B101 (MW)						Modifie	d EPA Mo	ethod 537
Client Data			Sample Data		1	Laborator	ry Data			
Name:	Alpha Analytical Lab	oratory	Matrix:	Water		Lab Sam	ple: 1601114-01	Date Received:	03-Sep-201	6 9:45
Project:			Sample Size:	0.127 L		QC Batc	h: B6I0058	Date Extracted:	13-Sep-201	6 7:28
Date Collected:	01-Sep-2016 10:00					Date Ana	alyzed: 13-Sep-16 18:18 Colu	ımn: BEH C18 Ana	lyst: AC	
Analyte	Conc. (ng/L)	RL			Qualifi	iers	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	ND	7.86				IS	13C2-PFOA	117	60 - 150	
PFOS	ND	7.86				IS	13C8-PFOS	68.2	60 - 150	

LCL-UCL - Lower control limit - upper control limit

Results reported to RL

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers

Only the linear isomer is reported for all other analytes

Work Order 1601114 Page 8 of 16

Sample ID:	1607530-B102 (MW)						Modifie	ed EPA M	ethod 537
Client Data			Sample Data			Laborato	ory Data			
Name:	Alpha Analytical Lab	ooratory	Matrix:	Water		Lab Sar	mple: 1601114-02	Date Received:	03-Sep-201	6 9:45
Project:			Sample Size:	0.125 L		QC Bat	ch: B6I0058	Date Extracted:	13-Sep-201	6 7:28
Date Collected:	01-Sep-2016 10:10					Date Ar	nalyzed: 13-Sep-16 18:30 Col	umn: BEH C18 Ana	lyst: AC	
Analyte	Conc. (ng/L)	RL			Qualif	iers	Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	11.2	8.01				IS	13C2-PFOA	101	60 - 150	
PFOS	16.1	8.01				IS	13C8-PFOS	88.9	60 - 150	

LCL-UCL - Lower control limit - upper control limit

Results reported to RL

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers

Only the linear isomer is reported for all other analytes

Work Order 1601114 Page 9 of 16

Sample ID:	1607530-SW1								Modifie	ed EPA Mo	ethod 537
Client Data			Sample Data			Labor	atory	Data Data			
Name:	Alpha Analytical Lab	ooratory	Matrix:	Water		Lab S	Sampl	le: 1601114-03	Date Received:	03-Sep-201	6 9:45
Project:			Sample Size:	0.123 L		QC E	Batch:	B6I0058	Date Extracted:	13-Sep-201	6 7:28
Date Collected:	01-Sep-2016 10:35					Date	Analy	yzed: 13-Sep-16 18:43 Colu	mn: BEH C18 Ana	lyst: AC	
								14-Sep-16 10:33 Colu	mn: BEH C18 Ana	lyst: AC	
Analyte	Conc. (ng/L)	RL	-		Qualit	fiers		Labeled Standard	%R	LCL-UCL	Qualifiers
PFOA	842	8.12	_				IS	13C2-PFOA	101	60 - 150	
PFOS	2910	40.6			D		IS	13C8-PFOS	95.4	60 - 150	D

LCL-UCL - Lower control limit - upper control limit

Results reported to RL

When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers

Only the linear isomer is reported for all other analytes

Work Order 1601114 Page 10 of 16

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The associated compound concentration exceeded the calibration range of

the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.

I Chemical Interference

J The amount detected is below the Reporting Limit/LOQ.

* See Cover Letter

Conc. Concentration

NA Not applicable

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1601114 Page 11 of 16

CERTIFICATIONS

Accrediting Authority	Certificate Number
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2014022
Nevada Division of Environmental Protection	CA004132015-1
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-004
Pennsylvania Department of Environmental Protection	012
South Carolina Department of Health	87002001
Texas Commission on Environmental Quality	T104704189-15-6
Virginia Department of General Services	7923
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request

Work Order 1601114 Page 12 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Work Order 1601114 Page 13 of 16

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1601114 Page 14 of 16

SUB UPS: VISTA-CA

1601114 0.50

	CHAIN OF	CUSIO	DY	PAGE 1 0	DF 1	Date	Rec'd i	n Lab:						AL	PHA .	Job#	: L162	7653
ALPH ANALY	TICAL	Project Infor	mation			A STATE OF THE PARTY OF THE PAR	1000	form	ation	Data		veral	oles			nform	-	
	Mansfield, MA	Project Name:													Same a	as Clier	nt info	PO #:
	TEL: 508-822-9300 FAX: 508-822-3288	, reject rumer					ADEx			No.		eliverat	SALESCO.				7.00	The second law beauty
Client Information	on •	Project Locatio	n: MA				julato e/Fed Pr			ement	s/Re	port l	Limits	Crite	ria			
Client: Alpha Analy	rtical Lab	Project #:																
Address: 8 Walkup	Drive	Project Manage	er: Karyn Ra	aymond						E CEF			A CONTRACTOR OF THE PARTY OF TH					ENCE PROTOCOLS
Westborough, Ma	01581	ALPHA Quote	#:						□ No							equired'		s) Required?
Phone: 508-898-92	220	Turn-Around	l Time			11500	ALYSI											TO
Fax:		_ Standard		Rush (ONLY IF	PRE-APPROVED)													SAMPLE HANDLING T Filtration A
Email: subreports@	Dalphalab.com	14 Day																□ Done
	been Previously analyzed by Alpha	Due Date:	Time:															□ Not Needed # □ Lab to do B
	ecific Requirements/Comments		its:			FOS Only												Preservation Lab to do (Please specify below) O T C C C C C C C C C C C C
ALPHA Lab ID	Sample ID	Col	lection	Sample	Sampler's	OA												
(Lab Use Only)		Date	Time	Matrix	Initials	537-PFOA/PFOS												Sample Specific Comments
	1607530-B101 (MW)	9/1/16	10:00	WATER		Х												2
	1607530-B102 (MW)	9/1/16	10:10	WATER		X												2
	1607530-SW1	9/1/16	10:35	WATER		X												2
											_				\vdash			
DI FACE ANOMED	OUESTIONS ASSOCIA					Die						200						
PLEASE ANSWER	QUESTIONS ABOVE!				Preservative	Pla NA		-	2	_				-2				Please print clearly, legibly and completely. Samples can
IS VOUD	DDOJECT		Dell	inquished Prin	- I COCIVATIVE		to/Ties				Dees:	rod D				Data (Ti		not be logged in and turnaround time clock will not
	PROJECT or CT RCP?		C	inquished By	9	Date/Time Received By: Date/Time 9/2/10 69:4			start until any ambiguities are									

SAMPLE LOG-IN CHECKLIST

Vista Project #:	160	1114			_ T/	AT	14		_
	Date/Time		Initials:		Loca	ation	w	no	1
Samples Arrival:	9/3/10	05:45	W	-	She	lf/Rac	:k:_ N	A	
	Date/Time		Initials:		Loca	ation	: WK	2-2	27 197
Logged In:	09/06/16	1325	Pal	5	She	lf/Rac	ek:_F	6	
Delivered By:	FedEx	UPS	On Trac	DHL		Ha Deliv		Otl	ner
Preservation:	Ice	Blu	ue Ice	Dr	y Ice			None	
Temp °C: 0.%	_	Time: 09	7:50 ed: Yes□	No⊡	The	mom	neter II	D: IR-	1
							YES	NO	NA
Adequate Sample	Volume Receive	ed?	Numerical International Company				V		
Holding Time Acce	ptable?						V		
Shipping Containe	r(s) Intact?		*/						
Shipping Custody	Seals Intact?							/	
Shipping Documer	tation Present?						1		
Airbill	Trk# 17	E30(5)	4449	441	280	7	V	,	
Sample Container	Intact?		<u> </u>				V		
Sample Custody S	eals Intact?						/	1	V
Chain of Custody /	Sample Docum	entation Pre	esent?				V		· ·
COC Anomaly/San	nple Acceptance	e Form com	pleted?					V	
If Chlorinated or Dr	inking Water Sa	amples, Acc	eptable Pre	servatio	n?				V
Na ₂ S ₂ O ₃ Preservat	ion Documented	d?	coc		Sam Conta		1	None	
Shipping Container		Vista	Client	Reta	1		urn	Disp	ose
Comments:		-			1			-	

Chain-o	f-Custody Reco	ord			Labora	atory:			Alp	ha			aborat ab use or	tory Jo	b#	2162	2768	-2	
			me: Evers		RP	P	roject Info			cation:	Newing	ton, NH	The train	пу)			1627653 Page 1 of 1		
G	Consultants	Project Nu	Project Number: 1607530								Mike S 14) (ce								
Wo PH	nicorn Park Drive burn, MA 01801 I: 781.721.4000	Send Repo		Jess Engle						Preservative							Sample Handling		
	X: 781.721.4073 MPTIVE CERTAINTY REC		to: labdata(ants.com						Ar	alysis				Sam	ples Field F	iltered	
			YES	NO												YE	S NO	NA	
If Yes, Are Dri	f Yes, Are MCP Analytical Methods Required? f Yes, Are Drinking Water Samples Submitted? f Yes, Have You Met Minimum Field QC Requirements?			YES YES	NO NO	NA NA										ampled Ship With Ice			
Lab Sample Number	GEI Sample ID		Colle Date	YES ction Time	NO Matrix	No. of Bottles	Sampler(s) Initials	PFOS	PFOA								YES N	IO emarks	
			9/1/2016	10:00	water	2	CRC	х	х										
03	1607530-B102(MW)		9/1/2016	10:10	water	2	MEG	х	х										
<u> </u>	1607530-SW1		9/1/2016	10:35	water	2	CRC	х	X										
wnenever poss		ost stringent	Method 1 Me	CP standard	d be met fo	or all anal	ytes				ound T				Before submitting rush turnaround samples, you must notify the laborator				
Relinquished by sam Relinquished by: (sign	Exper	9/1/161	ime: F	Received by: (signal of the control		e Frid	ge			al _X y	Oth	er ay		to con	es, yo firm th	u must no nat the TA	otify the lat T can be a	oratory chieved.	
GET "	Fride	9/2/16	9:56	Sol	lus E	Oco	4	HT 2000	5-Day	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which	3-Da								
elinquished by: (sign	nature) Carl	Date: T	ime: 9:57	Received by: (sig	1	9-2-16	6 9:56			A	udition	ai Requ	iireme	nts/Con	nmen	ts/Remar	(S:		
elinquished by: (sign	Many AAL	Date: T	me: R	Received by: (sig	nature)	cer													
The state of the s					700	u													

ANALYTICAL REPORT

Lab Number: L1718562

Client: GEI Consultants

400 Unicorn Park Drive Woburn, MA 01801

ATTN: Mike Sabulis
Phone: (781) 721-4114

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 Report Date: 06/21/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number: L1718562 **Report Date:** 06/21/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1718562-01	1607530-B101(MW)	WATER	NEWINGTON, NH	06/02/17 15:15	06/06/17
L1718562-02	1607530-B102(MW)	WATER	NEWINGTON, NH	06/02/17 12:45	06/06/17
L1718562-03	1607530-B103(MW)	WATER	NEWINGTON, NH	06/02/17 17:40	06/06/17
L1718562-04	1607530-FB	WATER	NEWINGTON, NH	06/02/17 15:15	06/06/17

L1718562

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 Report Date: 06/21/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.
--

Serial_No:06211716:15

Project Name: EVERSOURCE NH SRP Lab Number: L1718562

Project Number: 1607530 Report Date: 06/21/17

Case Narrative (continued)

Semivolatile Organics

WG1012571-3 LCSD: The internal standard (IS) response for 13C2-PFOA was below the acceptance criteria when compared to the continuing calibration, but within criteria when compared to the initial calibration. Target analytes recovered within critera, therefore no further action was taken.

The WG1012571-4 Laboratory Duplicate RPD, performed on L1718562-01, is above the acceptance criteria for perfluorooctanesulfonic acid (pfos) (36%); however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Luxen & Med Susan O' Neil

Title: Technical Director/Representative Date: 06/21/17

ORGANICS

SEMIVOLATILES

Serial_No:06211716:15

L1718562

06/21/17

Project Name: EVERSOURCE NH SRP

L1718562-01

1607530-B101(MW)

NEWINGTON, NH

Project Number: 1607530

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 06/02/17 15:15

Lab Number:

Report Date:

Date Received: 06/06/17
Field Prep: Not Specified

Extraction Method: EPA 537

Extraction Date: 06/13/17 10:00

Matrix: Water Analytical Method: 122,537

Analytical Date: 06/20/17 18:56

Analyst: AR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 537 - Mansfield Lab							
Perfluorooctanoic Acid (PFOA)	2.48		ng/l	1.78		1	
Perfluorooctanesulfonic Acid (PFOS)	3.05		ng/l	1.78		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	102		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	127		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	97		70-130	

L1718562

06/02/17 12:45

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Report Date: 06/21/17

Lab Number:

Date Collected:

Lab ID: L1718562-02

Client ID: 1607530-B102(MW) Sample Location: NEWINGTON, NH

Date Received: 06/06/17 Field Prep: Not Specified Extraction Method: EPA 537

Matrix: Water Analytical Method: 122,537 Analytical Date: 06/20/17 19:15

Extraction Date: 06/13/17 10:00

Analyst: AR

Parameter	Result	ult Qualifier Units RL		RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by EPA 537 - Mansfield Lab								
Perfluorooctanoic Acid (PFOA)	7.11		ng/l	1.85		1		
Perfluorooctanesulfonic Acid (PFOS)	14.2		ng/l	1.85		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	83		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	72		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	74		70-130	

L1718562

06/02/17 17:40

Project Name: EVERSOURCE NH SRP

L1718562-03

Project Number: 1607530

Lab ID:

SAMPLE RESULTS

Report Date: 06/21/17

Lab Number:

Date Collected:

Client ID: 1607530-B103(MW) Sample Location: NEWINGTON, NH

Date Received: 06/06/17 Field Prep: Not Specified Extraction Method: EPA 537

Matrix: Water Analytical Method: 122,537 Extraction Date: 06/13/17 10:00

Analytical Date: 06/20/17 19:33 Analyst: AR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by EPA 537 - Mansfield Lab								
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.85		1		
Perfluorooctanesulfonic Acid (PFOS)	1.87		ng/l	1.85		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	77		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	85		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86		70-130

L1718562

06/02/17 15:15

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

SAMPLE RESULTS

Report Date: 06/21/17

Lab Number:

Date Collected:

Lab ID: L1718562-04

Client ID: 1607530-FB Sample Location: NEWINGTON, NH Date Received: 06/06/17 Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 537

Analytical Method: 122,537 Analytical Date: 06/20/17 18:47 Extraction Date: 06/13/17 10:00

Analyst: AR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by EPA 537 - Mansfield Lab									
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.78		1			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.78		1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	87		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	97		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	98		70-130	

L1718562

Lab Number:

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 Report Date: 06/21/17

Method Blank Analysis Batch Quality Control

Analytical Method: 122,537 Extraction Method: EPA 537

Analytical Date: 06/20/17 18:38 Extraction Date: 06/13/17 10:00

Analyst: AR

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by EPA 5	37 - Mansfi	eld Lab for	sample(s):	01-04	Batch: WG1012571-1	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	96		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	116		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	99		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: EVERSOURCE NH SRP

Lab Number:

L1718562

Project Number: 1607530 Report Date:

06/21/17

_	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by EPA 537 - Man	sfield Lab Assoc	ciated sample(s	s): 01-04 Batc	h: WG101	2571-2 WG1012t	571-3			
Perfluorooctanoic Acid (PFOA)	94		108		70-130	14		30	
Perfluorooctanesulfonic Acid (PFOS)	86		110		70-130	24		30	

Surrogate	LCS %Recovery Q	LCSD ual %Recovery Qua	Acceptance of Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	95	111	70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	98	112	70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	92	122	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: EVERSOURCE NH SRP

Project Number: 1607530

Lab Number:

L1718562

Report Date: 06/21/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by E B102(MW)	:PA 537 - Ma	nsfield Lab	Associated sa	ample(s): 01-04	QC Ba	tch ID: WG	G1012571-5	QC San	nple: L1718	562-02	Client	ID: 1607530-
Perfluorooctanoic Acid (PFOA)	7.11	463	454	96		-	-		70-130	-		30
Perfluorooctanesulfonic Acid (PFOS)	14.2	428	444	100		-	-		70-130	-		30

	MS	MS	D Acceptance)
Surrogate	% Recovery Qu	ualifier % Recovery	Qualifier Criteria	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	90		70-130	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	94		70-130	

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1718562

EVERSOURCE NH SRP

Report Date:

06/21/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RP Qual Lin	D nits
Perfluorinated Alkyl Acids by EPA 537 - Mansfie 1607530-B101(MW)	ld Lab Associated sample(s):	01-04 QC Batch ID	: WG1012571-4	QC Samp	ole: L1718562-0	1 Client ID:
Perfluorooctanoic Acid (PFOA)	2.48	2.24	ng/l	10		30
Perfluorooctanesulfonic Acid (PFOS)	3.05	2.13	ng/l	36	Q	30

	Acceptance						
Surrogate	%Recovery Qualif	ier %Recovery (Qualifier Criteria				
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	102	88	70-130				
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	127	104	70-130				
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	97	88	70-130				

Project Name:

Project Number: 1607530

Serial_No:06211716:15 *Lab Number:* L1718562

Project Name: EVERSOURCE NH SRP

Project Number: 1607530 Report Date: 06/21/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1718562-01A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-01B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-01C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-02A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-02B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-02C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-03A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-03B	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-03C	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)
L1718562-04A	3 Plastic Trizma/1 Plastic/1 H20+Trizma	Α	NA		3.7	Υ	Absent		A2-537-PFOA/PFOS(14)

Project Name:EVERSOURCE NH SRPLab Number:L1718562Project Number:1607530Report Date:06/21/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or mainture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:EVERSOURCE NH SRPLab Number:L1718562Project Number:1607530Report Date:06/21/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:EVERSOURCE NH SRPLab Number:L1718562Project Number:1607530Report Date:06/21/17

REFERENCES

Determination of Selected Perfluorintated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

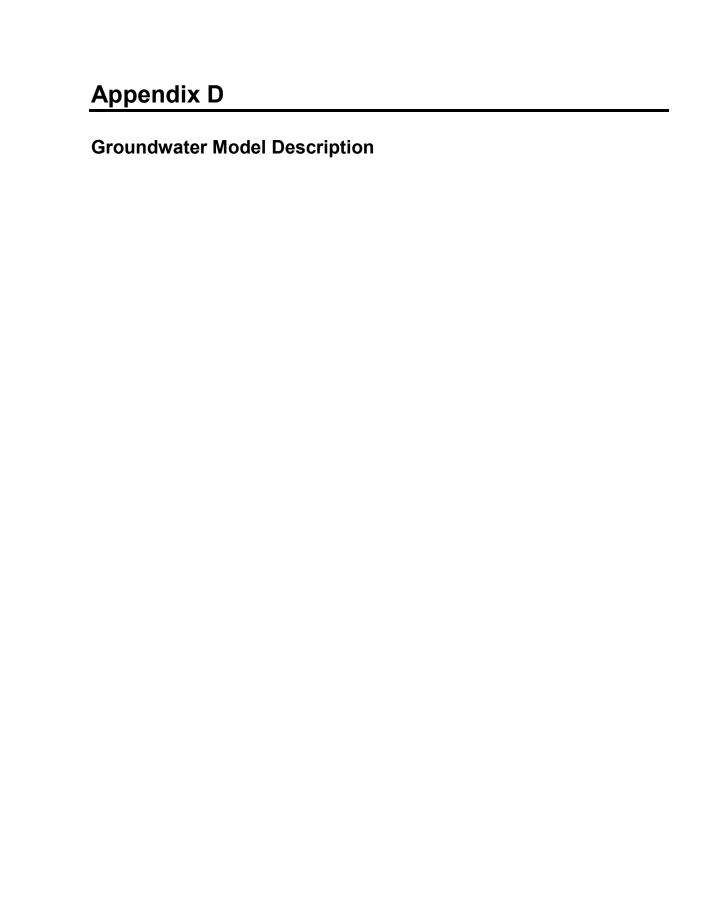
Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.


SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Chain-of	f-Custody Rec	ord			Labora	tory:			Alph	a		L (L	aborato	ory Job	°#L	1718562
	-					Pr	oject Infor	rmatio	n							3.4
		Project Na	ame: Everso	urce NH SI	RP			Proje	ct Loc	ation: N	ewing	ton, Ni	1			Page 1 of 1
Project Number: 1607530									Project Manager: Mike Sabulis (office: 781-721-4114) (cell: 508-633-9544))		
400.11	Consultants											ervativ				Sample Handling
	nicorn Park Drive ourn, MA 01801	Send Repo	ort to:	Jess Engle	hart						T					
The contraction	: 781.721.4000	Send EDD	to: labdata@	ngeiconsult	ants com											
FX	: 781.721.4073	Selid LDD	to. labdatage	ggeleonsult	unto.00m						An	alysis				Samples Field Filtered
MCP PRESUM	PTIVE CERTAINTY R	EQUIRED	YES !	NO												YES NO NA
If Yes, Are MC	CP Analytical Methods R	Required?		YES	NO	NA										Sampled Shipped
	nking Water Samples S			YES	NO	NA										With Ice
	ou Met Minimum Field		ents?	YES	NO	NA										YES NO
Lab Sample Number	GEI Sample		Colle		Matrix	No. of Bottles	Sampler(s)	PFOS	PFOA							Sample Specific Remarks
	1007700 D 101 (1 DA)		Date	Time	water		JAW			-	_	_	-			
856201	1607530-B101(MW)		6/2/2017	1515	water	3	JAW	X	x		-			1		
.02	1607530-B102(MW)		6/2/2017 6/2/2017	1245 1740	water	3	JAW	×	x							
103	1607530-B103(MW)		6/2/2017	1515	water	1	JAW	x	x							Field Blank
,04	1607530-FB		0/2/2017	1313	Water		0/111									
	10															
	- 84-															
	eded: GEI requires the	most stringen	t Method 1 M	ICP standar	d be met f	or all ana	lytes			Turnar						omitting rush turnaround
whenever pos Relinquished by san		Date :	Time:	Received by: (si	ignature)	May-34				(Busin						you must notify the laboratory that the TAT can be achieved.
. //	A 12 Interior	CONTRACTOR OF THE PROPERTY OF	2010	0	-0	F	سان			nal _X		ther Day		10 00		that the 17th dan be demoved.
Relinquished by: (signature)	gnature)	Date :	Time:	1. Received by: (si	40			7	5-Da	ay		ay				
· C .	la Endas	616	1132		a a	Way	200		J-Da				quirem	ents/Co	mme	ents/Remarks:
Relinquished by: (si	gnature)	Date :	Time:	Received by: (si	ignature)	0	1 1									
3 Section	a walot	616	1133	3. 100	teer	e/f										
Relinquished by: (si		Date :	Time:	Received by: (si	ignature)	/										
4. OL	and ADL	Ce-Coll	17540	4. lu	m	arti	^									
N	mpol	617/18	4=45	flu	Ellan	6,6	17/17	US	45							

Page 20 of 20

NEWINGTON NH – SRP INSTALLATION DEWATERING FLOW ESTIMATE FOR INSTALLATION TRENCH GW MODEL DESCRIPTION

Objective:

A trench excavation for a 115 kV transmission main installation is proposed across a farm field. Objective is to estimate dewatering rates to maintain dry excavation for utility trench.

Method:

Three-dimensional MODFLOW groundwater model used that directly outputs flow rate. Visual MODFLOW ® is a graphical user interface that runs the industry standard USGS MODFLOW code solving the groundwater continuity equation.

Assumptions:

Groundwater flow into excavations was modeled as steady state flow, assuming excavation open to full depth. Model space is shown on Figure 1. The model extends downward to elevation +10 ft. NAVD, which corresponds to an approximate 50 – 65-ft. aquifer thickness with impermeable base.

The water table aquifer is of relatively large extent such that a steady state cone of depression from dewatering is not expected to extend to the aquifer boundary during the dewatering period. The model therefore represents partial drawdown. For predictive model, the modeled east and west trench segments were boxed in with head boundaries relatively close to the trenches (40 ft.) to represent assumed extent of aquifer influence from temporary dewatering (Figure 2). A close head boundary provides a higher, more conservative flow rate estimate than infinite-extent assumptions. In a sensitivity analysis, moving the head boundary closer to the excavation (20 feet) resulted in a 30% increase in estimated flow. As the sensitivity prediction is within an order of magnitude, head boundary distance is not considered significant in this range.

Soil data: Soil borings indicate the water table aquifer is comprised of fine-grained alluvium, with occasional thin sand lenses. Hydraulic conductivity testing was performed at two locations, where values of 0.06 and 0.22 ft./day were estimated for monitoring wells in the western and eastern project areas, respectively. Hydraulic conductivity zones are shown on Figure 1.

The predictive model was run using dry and wet weather water table conditions. Depths to water in

Method:

Dewatering rates were estimated assuming a 25-foot trench length open at a time, with 5-foot width. Two trench lengths were modeled separately, representing the two soil conductivity zones, where shown on Figure 2. The computational grid is also shown on Figure 2. The model contains 61 vertical layers for discretization of vertical flow.

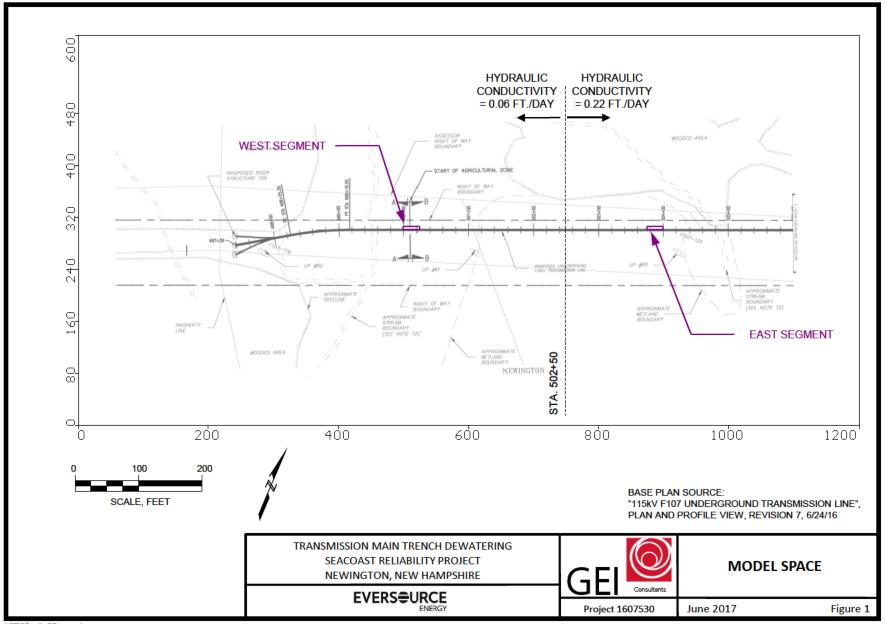
NEWINGTON NH – SRP INSTALLATION DEWATERING FLOW ESTIMATE FOR INSTALLATION TRENCH GW MODEL DESCRIPTION

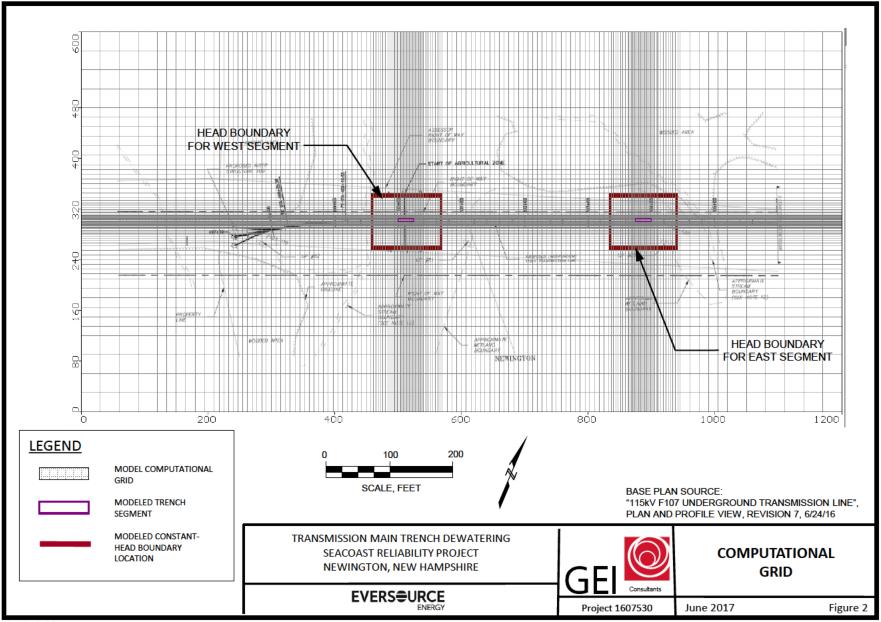
Method (continued):

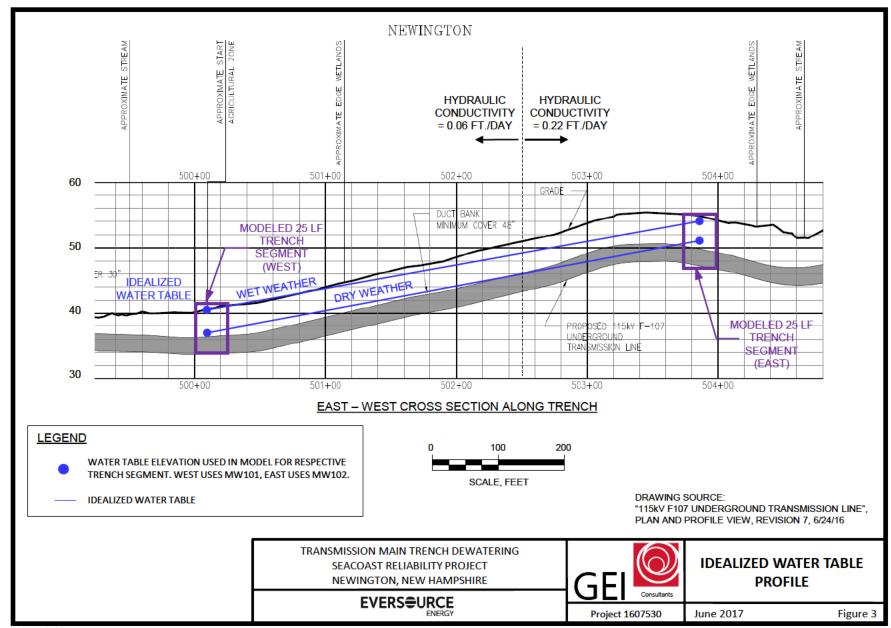
The model was bounded to include the full run of trench. Constant head cells were assigned within trench segments assuming sumps control water level. Both segments were boxed in with head boundaries approximately 40 feet from the trench (Figure 2), assuming a cone of influence would not extend very far during the period of open excavation. Head boundaries were assigned the elevations shown on Figure 3. The head boundaries create two separate model domains for each segment.

Site-specific elevations and the head boundary enclosures were used for reference purposes as shown on Figure 2. A 25-foot trench segment two feet below water table in soil of similar hydraulic conductivity would yield similar results. Similarly, smaller models the size of the head boundary enclosures would yield similar results.

For both trench segments, dewatering estimates were computed with and without inclusion of an approximately 6-inch sand seam (hydraulic conductivity = 5 ft./d) about a foot above excavation base.

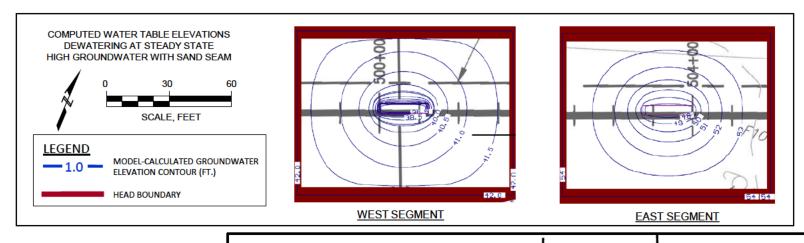

Results:


Results shown and tabulated on Figure 4. Comparatively, predicted rates increase disproportionately higher with the sand seam assumption in the east segment.


Limitations:

Model simulations represent seepage from soil strata represented as uniform, homogeneous, and isotropic. The soil properties modeled are represented by two borings and two hydraulic conductivity test results, which is a relatively low data density. Flow rate estimates may vary with additional information. Actual variability encountered may result in dewatering rates different than those predicted.

Potential water sources not modeled may also need to be considered for planning purposes, including but not limited to free drainage from soil while being excavated, storm runoff, channeling from high conductivity zones or other hydraulic connections to surface water, and subsurface features with contained or perched water.



RESULTS SUMMARY

		LOW GROU	JNDWATER	HIGH GROUNDWATER			
Trench Segment	Units	West	East	West	East		
Station	Ft.	500+00 to 500+25	503+75 to 504+00	500+00 to 500+25	503+75 to 504+00		
Assumed Ground Surface	Ft.	41	55	41	55		
Static Depth to Water (a)	Ft.	4.8	3.8	0.83	1.12		
Static GW elev	ft. NAVD	37	51	40.2	54		
Depth of Trench	Ft.	7	8	7	8		
Drawdown	Ft.	3	4	6.2	7		
Hyd. Conductivity	ft./day	0.06	0.22	0.06	0.22		
Target GW elev	ft. NAVD	34	47	34	47		
Dewatering Rate - no sand seam	gpd	45	486	104	942		
Dewatering Rate - with sand seam	gpd	82	770	187	1466		

a. Depth below ground surface at MW101 (west segment) or MW102 (east segment).

TRANSMISSION MAIN TRENCH DEWATERING SEACOAST RELIABILITY PROJECT NEWINGTON, NEW HAMPSHIRE

EVERS@URCE ENERGY

DEWATERING ESTIMATE AND DRAWDOWN PLOTS

Project 1607530

June 2017

Figure 4

Appendix B

Pease Area of Special Notice Documents

DEPARTMENT OF THE AIR FORCE

AIR FORCE CIVIL ENGINEER CENTER

11 Aug 17

Jared Sheehan Pease Development Authority 55 International Drive Portsmouth, NH 03801

Re: Area of Special Notice for Eversource Utility Easement - May 23, 2017

Dear Jared.

With regard to the subject Area of Special Notice (ASN) request, the Air Force (AF) reviewed the information provided in order to identify potential impact to ongoing AF remedial activities. As noted in your request, segments of the project area east of Arboretum Drive are located within two Groundwater Management Zones (GMZ): the Landfill 5 GMZ and the Site 13 GMZ. Additionally, Air Force delineation efforts have identified perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in groundwater originating from the former Pease Air Force Base. Two figures are attached to this letter depicting presumed extent of combined PFOS + PFOA concentrations in overburden and bedrock units. As you can see, there are areas where the proposed work is likely to encounter PFOS + PFOA at concentrations greater than the New Hampshire Department of Environmental Services (NH DES) Ambient Groundwater Quality Standards (AGQS). Saturated soils may also contain PFOS or PFOA due to the presence of these chemicals in the groundwater. The contractor must follow NH DES requirements for managing contaminated groundwater and soils in these areas. Please note the Air Force operated treatment system at Site 8 is not available to treat water generated by this activity. Otherwise, the AF concurs with the work as presented in the ASN letter. Please feel free to contact me at (207) 328-7109 x7 or by email at Peter. Forbes@us.af.mil if you have any questions

> PETER W. FORBES, GS-13 Environmental Program Manager

Peter W. Forbis

2 Attachments:

- 1. Extent of PFOS + PFOA Concentration in Overburden Groundwater above AGOS
- 2. Extent of PFOS + PFOA Concentration in Bedrock Groundwater above AGQS

Jared Sheehan

From: Hilton, Scott <Scott.Hilton@des.nh.gov>
Sent: Wednesday, August 09, 2017 5:34 PM

To: Comstock, Gregg; Pelletier, Rene; Wiggin, Dori; Mauck, Ridge

Cc: Locker, Mitch; Jared Sheehan; FORBES, PETER W GS-13 USAF HAF AFCEC/CIBE; 'Daly,

Michael'; Mongeon, Robin; Sandin, Peter

Subject: Eversource Seacoast Reliability Project

Attachments: PFOS+PFOA in Bedrock GW above AGQS.PDF; PFOS+PFOA in Overburden GW above

AGQS.pdf

Follow Up Flag: Follow up Flag Status: Flagged

Hi Gregg

The Waste Management Division, DOD Sites Section has completed reviewing the Eversource Seacoast Reliability Project Soil and Groundwater Management Plan (Plan) as it pertains to proposed construction work in areas of Newington and the Pease Tradeport potentially impacted with PFC's or other contamination from past Air Force activities at the Former Pease AFB.

Comments.

- 1) The Frink Farm Property Soil and Groundwater Management Plan is located in Appendix A and was developed based upon specific boring and sampling work undertaken to better understand the conditions at the site. The data Eversource collected supports their proposed soil and groundwater management approach. It appears groundwater generated from the Knights Brook crossing area will be assumed to be contaminated with PFCs and will be treated either on or offsite and discharged under an applicable permit program. Given the PFC contamination associated with the Knights Brook area, these measures are appropriate. In the report's discussion of this dewatering and treatment location we note a discrepancy between the alignment station numbers between the "Project Area Plan" and the "Cross Section Knights Brook Tributary" and could not verify the exact area where groundwater treatment will be implemented. As an example HA-1 in the Project Area Plan is located at station 498+78.61, however in the Knights Brook Cross Section HA-1 is located at 497+60.5. This discrepancy needs to be clarified so the assumed area needing treatment can be verified.
- 2) Work outside the Frink property is addressed in the general Plan. On page 4, the Dewatering Section states that "We have assumed that groundwater generated during dewatering is acceptable for recharge within the Project Area." There does not appear to be any discussion regarding sampling procedures for the generated water to determine if contaminants are present above the AGQS and if treatment is needed. The Air Force has developed the attached PFC groundwater contamination maps for bedrock and overburden groundwater. The location of the Eversource work is also shown on the maps. While the maps are preliminary, and a GMZ has not been finalized, it is evident that nearly all of the Eversource work locations are within or near the inferred AGQS PFC groundwater contamination boundary and under these circumstances Eversource needs to include in the Plan a water sampling and testing program to determine the appropriate method of handling generated water.
- 3) Eversource should contact the Air Force to determine if water treatment at the Site 8 plant is an option as described in the Plan.

- 4) An Area of Special Notice approval from the Air Force/PDA is needed for work being conducted on the Pease Tradeport property. These comments do not supersede the ASN requirements and procedures. In addition to the PFC contamination, several of the Eversource excavations appear to be located within or on the established GMZ boundary of 2 Pease contaminated sites; Landfill 5 and the BFSA. Any excavation dewatering in these GMZ areas should also be sampled for metals and VOC's.
- 5) While our review focused on Pease related contamination, Eversource should evaluate if other contamination related to the past maintenance of powerlines could be associated with the soils or groundwater and if so this should be addressed in the Plan. For example past herbicide use should be examined, one concern would be the transport of potentially contaminated soils to off-site locations.

If you have any questions regarding these comments please give me a call.

Thanks Scott

Scott Hilton
Waste Management Division
DOD Sites Section
603-559-1512

From: Comstock, Gregg

Sent: Tuesday, August 01, 2017 2:59 PM

To: Hilton, Scott; Locker, Mitch

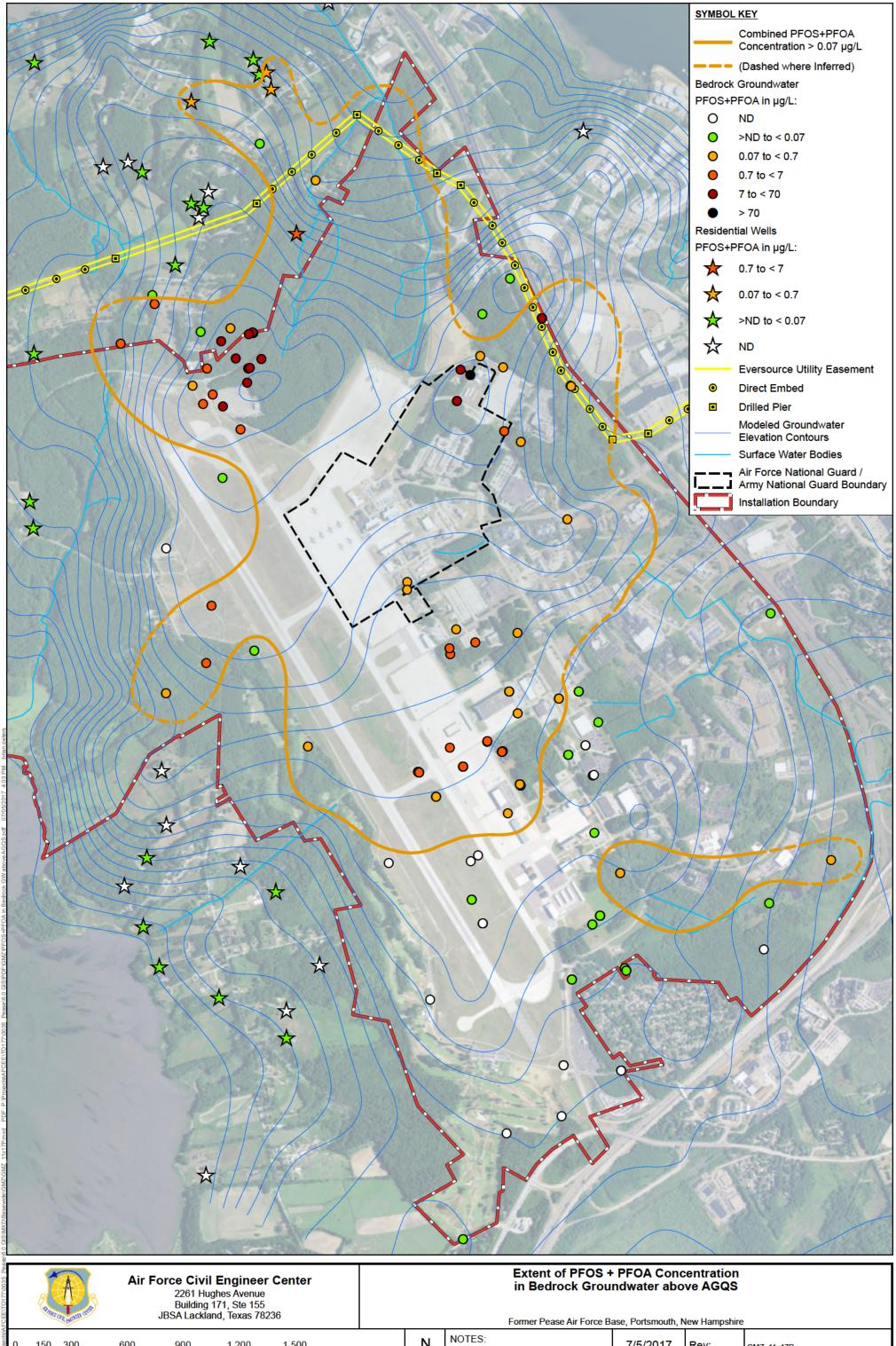
Cc: Wiggin, Dori; Mauck, Ridge; Pelletier, Rene

Subject: SRP Soil and GW Mgmnt Plan

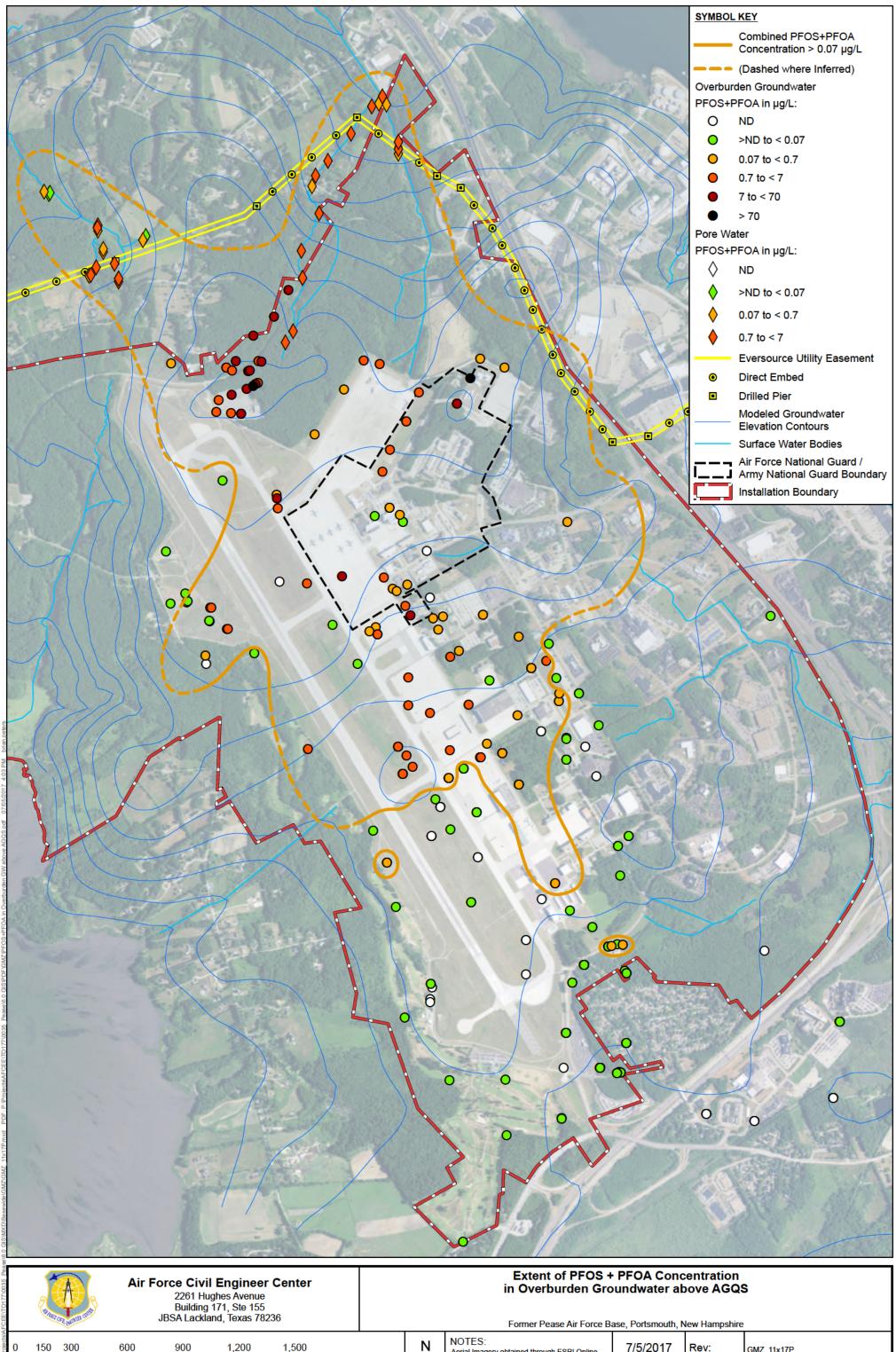
Hi Scott and Mitch:

Please review the Soil and Groundwater Management Plan for the Eversource Seacoast Reliability Project which is before the Site Evaluation Committee (SEC).

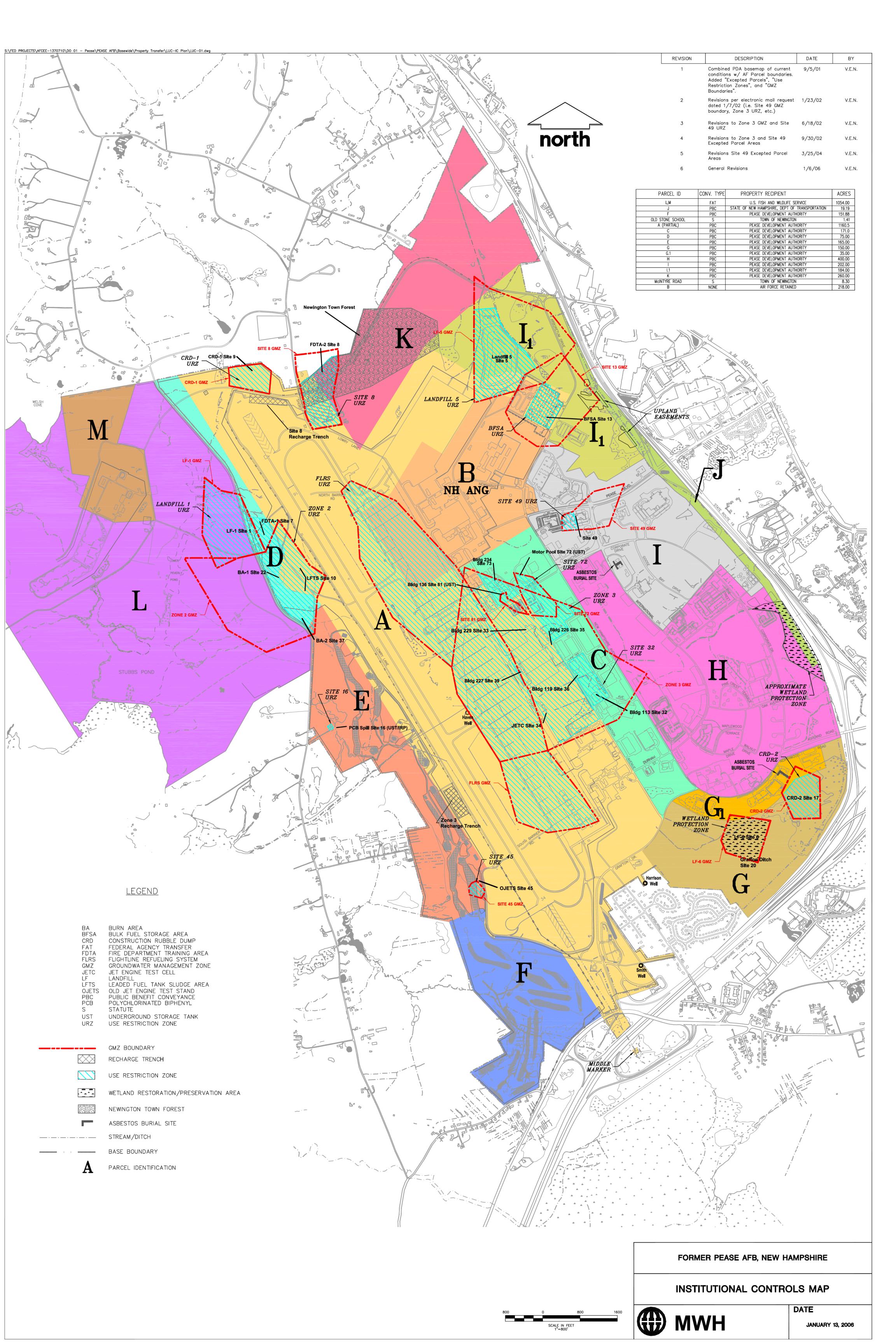
Please let Ridge, Dori and I know by August 15th if you have any comments. If that date doesn't work for you, please let me know when you think can get to it.


Thank you gents.

Best, Gregg


Gregg Comstock, P.E.

Supervisor, Water Quality Planning Section


NH Department of Environmental Services, Watershed Management Bureau 29 Hazen Drive, PO Box 95 Concord, NH 03302-0095 603-271-2983 gregg.comstock@des.nh.gov

1,500 ____ Meters 300 600 900 7/5/2017 150 1,200 Rev: GMZ_11x17P -Aerial Imagery obtained through ESRI Online Services 750 1,500 3,000 4,500 6,000 Drawn: BRP Chk: RS PROJ: 775361201 Feet

1,500 ____ Meters 300 600 900 7/5/2017 150 1,200 Rev: GMZ_11x17P -Aerial Imagery obtained through ESRI Online Services 750 1,500 3,000 4,500 6,000 Drawn: BRP Chk: RS PROJ: 775361201 Feet

certain environmental conditions, the Grantor shall not be liable for any latent or patent defects in the Property, except to the extent required by applicable law.

VI. NOTICES AND COVENANTS RELATED TO SECTION 120(h)(3) OF THE COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION AND LIABILITY ACT (CERCLA), AS AMENDED, (42 U.S.C. §9620(h)(3)).

- A. Pursuant to section 120(h)(3)(A)(i) of CERCLA, the following is notice of hazardous substances on the Property, and a description of remedial action taken by the Grantor concerning the Property.
- 1. The Grantor has made a complete search of its files and records. Exhibit B contains a table with the name of hazardous substances stored for one year or more, or known to have been released or disposed of, on the Property; the quantity in kilograms and pounds of the hazardous substance stored for one year or more, or known to have been released, or disposed of, on the Property; and the date(s) on which such storage, release, or disposal took place.
- 2. A description of the remedial action(s) taken by the Grantor on the Property regarding hazardous substances is contained in Exhibit B.
- 3. Pursuant to section 120(h)(3)(A)(ii) of CERCLA, the United States covenants and warrants:
- (a) that all remedial action necessary to protect human health and the environment with respect to hazardous substances remaining on the Property has been taken before the date of this Deed; and
- (b) any additional remedial action found to be necessary after the date of this Deed for contamination on the Property existing prior to the date of this Deed will be conducted by the United States.

This warranty will not apply in any case in which any grantee of the Property, or any part thereof, is a potentially responsible party under CERCLA with respect to the Property before the date on which such grantee acquired its interest in the Property, or is a potentially responsible party as a result of an act or omission affecting the Property. For the purposes of this warranty, the phrase "remedial action necessary" does not include any performance by the United States, or payment to the Grantee from the United States, for additional remedial action that is required to facilitate use of the Property for uses and activities prohibited by those environmental use restrictive covenants set forth in section VI.B. below, as may be modified or released pursuant to section VI.C.

4. The United States has reserved a no-cost right of access to the Property in the Reservation section of this Deed in order to perform any remedial or corrective action as required by CERCLA section 120(h)(3)(A)(iii).

NOTICE

BREACH OF ANY ENVIRONMENTAL USE RESTRICTIVE COVENANT IN SECTION VI.B. BELOW, MAY AFFECT THE FOREGOING WARRANTY

B. Environmental Use Restrictive Covenants

- 1. For purposes of the environmental use restrictive covenants in this section, the term "Property" includes any part of the Property specifically described on Exhibit A to this Deed to which one or more of these environmental restrictive covenants may apply.
- 2. The following environmental use restrictive covenants are being created to protect human health and the environment with regard to residual contamination remaining on the property and are a component of the remedial action referred to in Section A.2 above:
- (a) The groundwater within the areas described in Exhibit C as "Groundwater Management Zones" (hereafter GMZs) is contaminated with chlorinated volatile organic compounds, petroleum related hydrocarbons, or other substances deemed potentially harmful to human health. In order to protect the public and site personnel (from exposure to the contaminants), and to protect the integrity of the Grantor's remedial activities and systems, and to prevent interference with such remedial activities, subject to paragraph VI.C. below, the Grantee is prohibited from installing a well within a GMZ except for the purpose of determining or monitoring groundwater quality or quantity.. In addition, subject to paragraph VI.C. below and subparagraphs (b) and (c) below, in those areas on the Property located outside the GMZs described in Exhibit C, the Grantee is prohibited from extracting any groundwater, injecting water into the ground or applying surface water in a manner that causes the migration of any contaminated groundwater in excess of ambient groundwater quality standards to a point beyond the applicable GMZ. Nothing contained in this section shall prohibit the Grantee from creating new drinking water supply wells to replace in kind drinking water supply wells existing on the Property on or before the date hereof, namely, the Smith Well, the Harrison Well, and the Haven Well.
- (b) The Grantee may extract groundwater from the Smith and Harrison wells, and any replacement thereof, up to the sustainable yield for each well. With respect to the so-called Haven Well, or any replacement thereof, the Grantee shall not exceed the water consumption rates through the year 2010, which are described in Exhibit D hereto. Notwithstanding the foregoing limitations, the Granter may grant exceptions to the pumping limits referred to in Exhibit D upon the written request of the Grantee. The Grantee shall bear all costs whatsoever in obtaining approval to exceed these pumping limitations.
- (1). The Grantor shall release the pumping restrictions on the so-called Haven Well, or any replacement thereof, if at any time the Grantor determines such restriction is no longer needed. If at the end of the period described in Exhibit D, the Grantor determines a limitation on use of the Haven Well or any replacement is still required, the Grantee shall be limited to use of the Haven Well and/or replacement up to the limits authorized in the year 2010.

- (2). During the period of the restriction described in paragraph 2(b) above, the Grantee shall consult with the Grantor at least annually regarding the usage of the Haven Well, or any such replacement well, and its potential to move contamination from various plumes within the well's zone of influence. The foregoing consultation shall occur during March, prior to the Grantee's peak water demand season. This requirement to consult with the Grantor may be waived upon the Grantee obtaining the written approval of the Grantor.
- (3). As long as the Grantee is operating within the limits authorized under either Exhibit D or paragraph VIB2(b)(1) of the deed, the Grantor shall operate a treatment plant to address any contaminated groundwater extracted from the Haven Well. Notwithstanding the foregoing, the Grantor will not be responsible for the cost of operating the treatment plant if the Grantee extracts water in excess of the pumping restrictions contained in this deed and such excess withdrawal is the sole reason that operation of the treatment plant is required.
- (c) The surface and subsurface soils within the areas described in Exhibit C as "Use Restriction Zones" (hereafter URZs) are contaminated with chlorinated volatile organic compounds, petroleum related hydrocarbons, or other substances deemed potentially harmful to human health. In order to prevent direct exposure to and protect the public and site personnel (from exposure to the contaminants), and to protect the integrity of the Grantor's remedial activities, and to prevent interference with such remedial activities, subject to paragraph VI.C. below, the Grantee is prohibited from using any portion of the Property within the URZs for residential use, childcare centers, playgrounds, athletic fields, or elementary or secondary schools. The Grantee is also prohibited from any digging, excavation, or construction within the URZs unless the Grantee obtains approval from the Grantor as provided in the Memorandum of Understanding between the Pease Development Authority and the U.S. Air Force attached hereto as Exhibit E or paragraph V.C. below in the event this restriction may be released.
- (d) In order to protect the integrity of the Grantor's remedies with respect to the URZs described as Construction Rubble Dump 1 (CRD-1 Site 9) Construction Rubble Dump 2 (CRD-2 Site 17), and Landfill 5 (Site 5), as described in Exhibit C, the Grantee shall take no action that impacts the integrity of the landfill cover system at these URZs. Such prohibited activities include but are not limited to use of ATV or other similar vehicles, excavation or other activities that lead to erosion or damage of the landfill cover system.
- (e) The Grantee covenants not to disturb, move, damage, mar, tamper with, interfere with, obstruct, or impede any monitoring wells, treatment facilities, piping, and other facilities associated with any environmental investigation, response action or other corrective action on the Property. The Grantee covenants not to disturb buried asbestos-containing material (ACM) or associated cover material in the ACM Zones described on Exhibit C without the prior written approval of the NHDES Waste Management Division.
- 3. It is the intent of the Grantor and the Grantee that the Environmental Use Restrictive Covenants in this section bind the Grantee and shall run with the land. It is also the intent of the Grantor and the Grantee that the Grantor will retain the right to enforce any restrictive covenant in this section through the chain of title, in addition to any State law that requires the State

to enforce any restrictive covenant in this section. The Grantee covenants to insert all of this section in any deed to the Property that it delivers.

- C. Release of Environmental Use Restrictive Covenants.
- 1. The Grantee may request from the United States a modification or release of one or more of the environmental use restrictive covenants in whole or in part in this section, subject to the notification and concurrence or approval of the NHDES and EPA Region 1. In the event the request of the Grantee for modification or release is approved by the United States, NHDES, and EPA Region 1, the United States agrees to modify or release the covenant (the "Covenant Release") giving rise to such environmental use restriction in whole or in part. The Grantee understands and agrees that all costs associated with the Covenant Release shall be the sole responsibility of the Grantee, without any cost whatsoever to the United States. The United States shall deliver to the Grantee in recordable form the Covenant Release. The execution of the Covenant Release by the United States shall modify or release the environmental use restrictive covenant with respect to the Property in the Covenant Release.
- 2. In the event that the environmental use restrictive covenants contained in this section are no longer necessary, the United States will record any appropriate document modifying or removing such use restrictions, as appropriate.

VII. OTHER COVENANTS

- A. <u>Airport Obligations</u>. By the acceptance of this Deed or any rights hereunder, the Grantee, for itself, its successors and assigns, agrees that the transfer of all the Property transferred by this Deed, is accepted subject to the following terms, restrictions, reservations, covenants, and conditions set forth in subparagraphs 1 and 2 of this paragraph, which shall run with the land, provided that the Property transferred hereby may be successively transferred only with the proviso that, unless otherwise approved by the Federal Aviation Administration (FAA), any such subsequent transferee assumes all of the obligations upon the Grantee by the provisions of this Deed:
- 1. That, except as provided in subparagraph 1 of the below paragraph B, the property transferred by this instrument shall be used for public airport purposes for the use and benefit of the public, on fair and reasonable terms and without unjust discrimination and without grant or exercise for any exclusive right for use of the airport within the meaning of the term "exclusive right" as used in subparagraph 3 of the below paragraph B. As used in this instrument, the term "airport" shall be deemed to include all land, buildings, structures, improvements and equipment used for public airport purposes.
- 2. That, except as provided in subparagraph 1 of the below paragraph B, the entire landing area, as defined in 49 U.S.C. 40102(28) and Federal Aviation Regulations pertaining thereto, and all structures, improvements, facilities and equipment in which this Deed transfers any interest shall be maintained for the use and benefit of the public at all times in safe and serviceable condition,

Appendix C

Contractor Means & Methods Summary

Appendix C-1 Soil and Groundwater Management Plan for Construction of Structures from the Crossings Mall in Newington East to the Portsmouth Substation – May 3, 2019

Appendix C-2 Construction Dewatering Plan Details for Dewatering at Three Locations Requiring an EPA NPDES Dewatering or Remediation General Permit for Discharge to Surface Water Bodies.

Appendix C-3 Excavation and Stockpile Management Plan

Appendix C-4 Supplemental Information - Soil and Groundwater Management at the Frink Farm Property

Appendix C-1

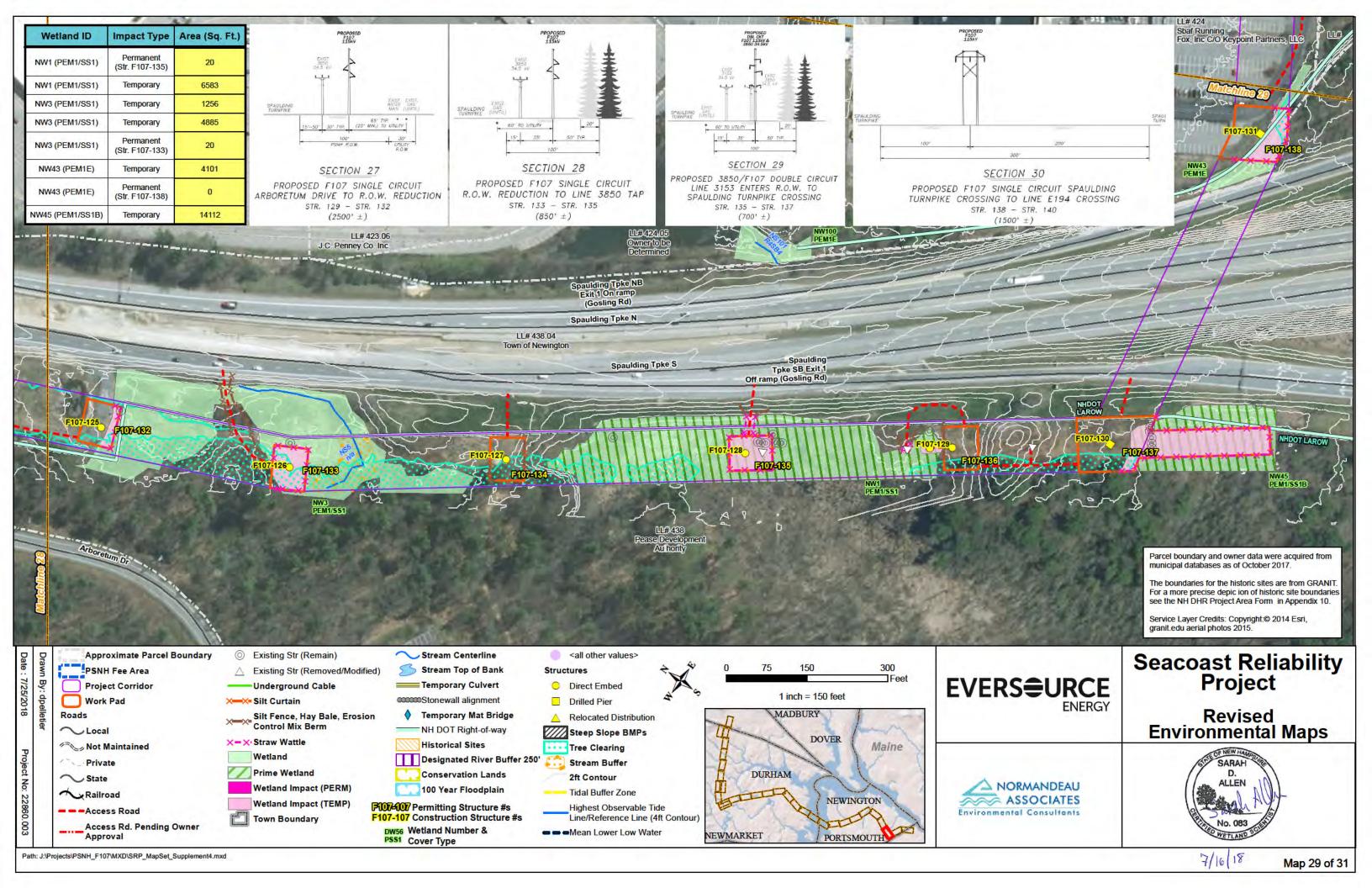
Soil and Groundwater Management Plan for Construction of Structures from the Crossings Mall in Newington East to the Portsmouth Substation – May 3, 2019

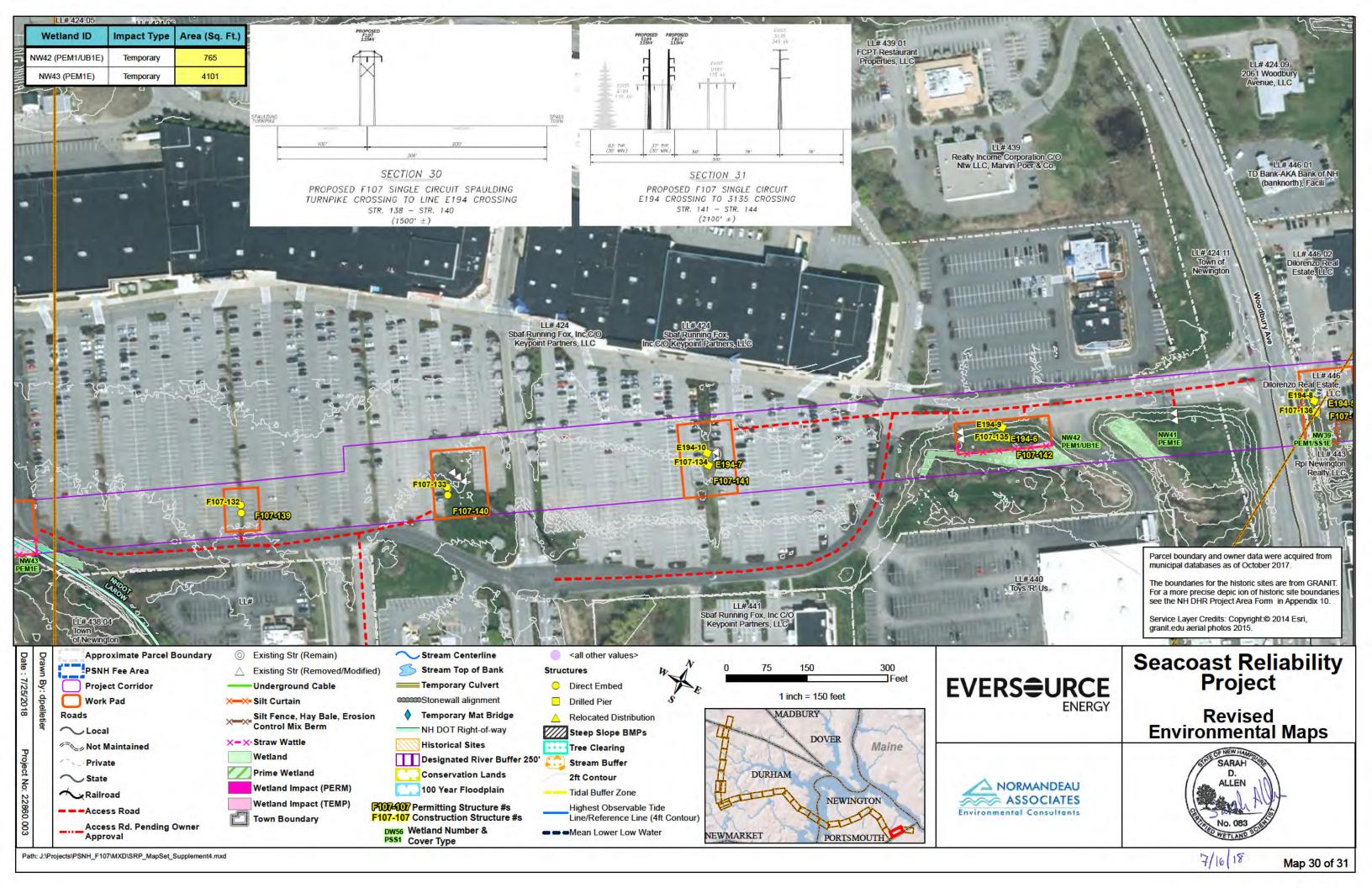
Soil and Groundwater Management Plan for Construction of Structures from the Crossings Mall in Newington East to the Portsmouth Substation

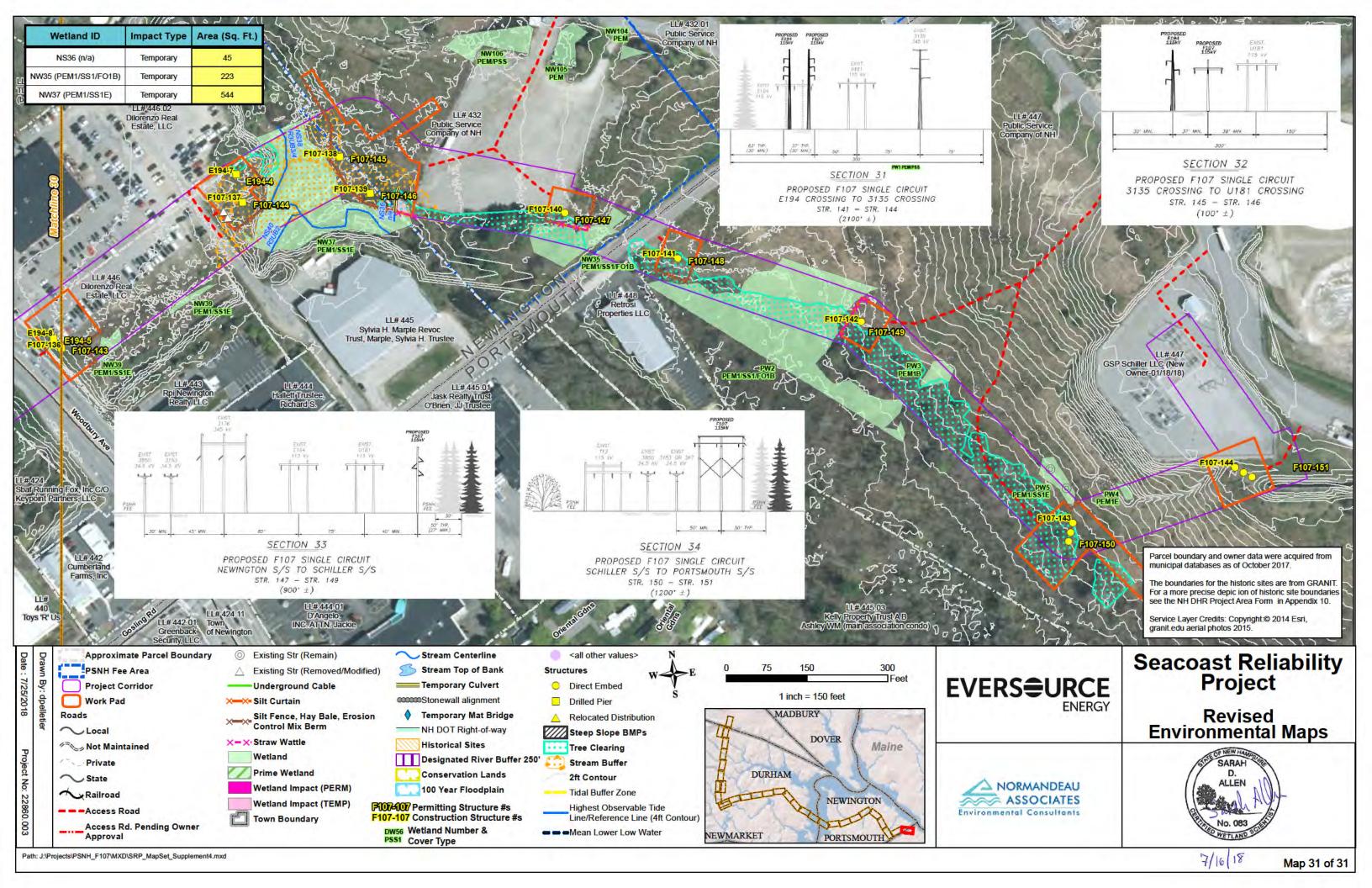
Seacoast Reliability Project - SEC Docket #2015-04

May 3, 2019

Pursuant to NHDES Wetlands Condition 38 in the NH Site Evaluation Committee *Order and Certificate of Site and Facility with Conditions* issued on January 31, 2019, in lieu of final approval of the SRP Soil and Groundwater Management Plan dated July 18, 2018, and in order to meet outage schedule requirements for a May 6, 2019 work start, Eversource requests that the following protocol be reviewed and approved by the Department for management of soils and groundwater resulting from the installation of Structures located within the Crossings Mall, adjacent Woodbury Avenue, and east within the ROW to Portsmouth Substation. Specifically, this request is for structure locations F-107 131/138 through F-107 144/151 and E-194 10/7 through E-194 7/4. (Refer to the attached Environmental Maps Sheets 29, 30 and 31). Eversource's contractor, JCR Construction and their environmental consultant, GZA, propose to use Roll Off Trailers (roll offs) for temporary storage of soils. This will allow for containment of soil resulting from drilling and excavation activities without placement of soil on the ground in these areas. The soils will be sampled while contained in the roll offs, consistent with disposal facility requirements, then loaded on trucks for eventual transport and disposal at a designated facility in accordance with all applicable laws and regulations.


Eversource proposes the following general procedure to manage soils in this section of the ROW:


- Roll-offs will be positioned adjacent to the drilling location for loading. Once loaded, roll offs may be repositioned within the ROW corridor.
- Roll offs will be lined and water tight in order to be prepared for saturated soils, as needed.
- Polyethylene sheeting will be placed on the ground surface within the work area, so that spillage
 from drill bits and excavator buckets will be contained on polyethylene sheeting for transfer into
 the roll off, as needed.
- At structure locations where there is suitable area in the ROW to reuse unsaturated soils (soils that would not be impacted by a potential zone of groundwater contamination), these soils will be initially placed on polyethylene sheeting and field screened with a photoionization detector (PID) and inspected for visual and/or olfactory evidence of contamination. If there is visual, olfactory or PID screening evidence of contamination, these soils will be placed into the roll-off containers along with saturated soils for characterization and offsite disposal.
- Where there is not the opportunity for reuse of clean unsaturated soils within the ROW, unsaturated (above water table) and saturated soils will be placed into separate roll offs.
- Saturated soils will be dewatered prior to disposal and consistent with facility requirements.
- Eversource contractors will coordinate activities so that soils from each Structure/work location are contained within the same roll-offs.
- It is estimated, based on anticipated quantities in this area, that 20 25 roll offs will be required for soil storage.
- All roll offs will be stored within the Eversource ROW and covered each day after use.



If dewatering of drilling excavations and/or soil dewatering is needed, a vacuum truck will be used to recover groundwater from these processes, which will be transported off site and disposed of at a treatment facility in accordance with all applicable laws are regulations.

At the completion of these activities a report that documents the storage, sampling and disposal of soil and recovery and disposal of groundwater will be provided to the Department.

Nelson, Kurt I

From: Comstock, Gregg < Gregg.Comstock@des.nh.gov>

Sent: Monday, May 6, 2019 12:46 PM

To: Nelson, Kurt I

Cc: Sandin, Peter; Adams, Collis; Price, David

Subject: Proposed Soil & GW Plan for Crossings Mall to Portsmouth SS East of Spaulding Turnpike

Attachments: 20190503 Soil & GW Mgmt Crossings to Portsmouth SS_rev2.pdf

EVERSOURCE IT NOTICE - EXTERNAL EMAIL SENDER **** Don't be quick to click! ****

Do not click on links or attachments if sender is unknown or if the email is unexpected from someone you know, and never provide a user ID or password. Report suspicious emails by selecting 'Report Phishing' or forwarding to SPAMFEEDBACK@EVERSOURCE.COM for analysis by our cyber security team.

Kurt,

The document listed below (and attached), submitted by Public Service Company of New Hampshire (d/b/a Eversource Energy) pursuant to NHDES Wetlands Condition 38 In the NH Site Evaluation Committee *Order and Certificate of Site and Facility with Conditions* issued on January 31, 2019, which covers work associated with installation of structures on the east side of Spaulding Turnpike (see the plan for specific structure numbers), is acceptable to the New Hampshire Department of Environmental Services (NHDES) Watershed Management Bureau (WMB) whose review focused on compliance with state surface water quality standards (Env-Wq 1700).

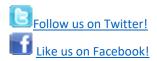
Soil and Groundwater Management Plan for Construction of Structures from the Crossings Mall in Newington East to the Portsmouth Substation

Seacoast Reliability Project - SEC Docket #2015-04

May 3, 2019

According to Peter Sandin, the NHDES Waste Management Division anticipates follow-on coordination between project stakeholders regarding the management of soils and groundwater associated with those sections of the project that are on the former Pease Air Force Base or where investigation has documented contaminants associated with the base may be present.

Regards, Gregg


Gregg Comstock, P.E.

Supervisor, Water Quality Planning Section
Watershed Management Bureau
Water Division, NH Department of Environmental Servi

Water Division, NH Department of Environmental Services

29 Hazen Drive, P.O. Box 95 Concord, NH 03302-0095 Phone: (603) 271-2983

Email: gregg.comstock@des.nh.gov

From: Nelson, Kurt I < kurt.nelson@eversource.com>

Sent: Friday, May 3, 2019 11:33 AM

To: Comstock, Gregg < Gregg.Comstock@des.nh.gov>

Cc: Sandin, Peter < Peter. Sandin@des.nh.gov>

Subject: RE: Proposed Soil & GW protocol for Crossings Mall to Portsmouth SS

Here is the updated version as requested.

From: Comstock, Gregg < Gregg.Comstock@des.nh.gov >

Sent: Friday, May 3, 2019 11:22 AM

To: Nelson, Kurt I < <u>kurt.nelson@eversource.com</u>> **Cc:** Sandin, Peter < Peter. Sandin@des.nh.gov>

Subject: RE: Proposed Soil & GW protocol for Crossings Mall to Portsmouth SS

EVERSOURCE IT NOTICE - EXTERNAL EMAIL SENDER **** Don't be quick to click! ****

Do not click on links or attachments if sender is unknown or if the email is unexpected from someone you know, and never provide a user ID or password. Report suspicious emails by selecting 'Report Phishing' or forwarding to SPAMFEEDBACK@EVERSOURCE.COM for analysis by our cyber security team.

Appendix C-2

Construction Dewatering Plan Details for Dewatering at Three Locations Requiring an EPA Dewatering or Remediation General Permit for Discharge to Surface Water Bodies.

CONSTRUCTION DEWATERING PLAN

Seacoast Reliability Project Eversource Energy Newington, New Hampshire

GZA has prepared this Construction Dewatering Plan to describe procedures for management of potentially contaminated groundwater generated during excavation and drilling activities associated with the proposed Seacoast Reliability Project, F107 transmission line (SRP) through Newington, New Hampshire. The proposed transmission line construction consists of overhead structures with drilled or excavated foundation and underground alignment sections installed by jacking methods or direct bury. The project alignment passes north and east of the former Pease Air Force Base where historic releases of perflourinated compounds (PFCs) as well as petroleum and chlorinated solvents have occurred. This Construction Dewatering Plan applies to construction of the SRP in Newington, east of Little Bay from Gundalow Landing to the Portsmouth Substation.

To assist with the on-site management, discharge, and disposal of groundwater generated from the SRP construction in Newington, GZA has been retained by JCR Construction (overhead alignment contractor) and McCourt Construction Company (underground alignment contractor). GZA will be on-site during construction work related to potentially contaminated soil and groundwater to assist the Contractors with dewatering activities.

Below is a general outline of the approach to dewatering, field treatment, discharges to surface water and disposal:

Dewatering Approach

Eversource anticipates encountering groundwater in some locations during the installation of structures for the construction of the Seacoast Reliability Project. In order to manage groundwater and work in the dry during construction, groundwater may be pumped from drilled holes or excavations. Also, it is anticipated that saturated soils will need to be dewatered while in stockpiles or roll off containers, prior to off-site disposal. The following procedures will be used for dewatering during construction:

- Groundwater generated from excavations will be limited to the extent possible by construction sequencing,
- As needed, groundwater will be pumped from drilled holes, excavations, stockpiles and roll off containers using traditional pumps or vacuum trucks,
- Groundwater generated during dewatering activities outside of areas with approved discharge permits
 will be collected into vacuum trucks or water totes and staged in frac tanks for settling and disposal
 characterization sampling. Pending licensed facility approvals, the collected groundwater will be
 transported off-site for disposal at an approved facility,
- Polyethylene sheeting (minimum 6-mil) will be placed on the ground surface where saturated soils are transferred with drilling and excavation equipment into trucks and roll-offs, in order to capture small amount of saturated soils and groundwater,
- Slurry-tight trucks and roll-offs will be utilized to transport soils to stockpile staging area, to contain water during transport,

- An impervious soil stockpile pad will be utilized to stage saturated soil and dewatering will occur via gravity within these staging areas. As water seeps from the stockpile within the impervious pad, water will be pumped into holding tanks. See details for stockpile management and pad construction in Attachment C-3 Excavation & Stockpile Management Plan.
- In locations where larger quantities of groundwater is anticipated to be pumped, Eversource has or will obtain permit authorization from Environmental Protection Agency (EPA) for discharges to surface water. NPDES Dewatering and Remediation General Permit applications and permits received to date have been provided to NHDES as part of their review of the Soil and Groundwater Management Plan. For an added level of protection of the receiving surface water and consistent with discussions with NHDES, Eversource has elected to add pre-treatment of groundwater for PFCs using carbon filtration at the Frink and Gundalow Landing sites in Newington where PFC concentrations have been detected in groundwater. EPA permits and treatment are described below:
 - o **Getchell Property** Eversource has obtained NPDES Dewatering General Permit No. MAG070471 for groundwater discharges during construction at this location at the west shore of Little Bay in Durham. Groundwater will be pre-treated for sediment removal using a holding tanks for settling larger suspended solids and discharging to dewatering bags for filtration of finer sediment. Following appropriate residence time for treatment, the water will be sampled consistent with RGP requirements prior to discharge into Little Bay.
 - O Gundalow Landing Eversource has obtained NPDES Dewatering General Permit Permit No. MAG070464 for groundwater discharges during construction at this location. Groundwater will be pre-treated for sediment removal using holding tanks for settling larger suspended solids and discharging to dewatering bags for filtration of finer sediment. At the Gundalow Landing site, water will be pumped into a second holding tank where it will be treated for PFCs using a carbon filter system. Refer to the Remediation General Permit Addendum dated June 27, 2019 for the Frink Farm property for treatment system information provided by the dewatering subcontractor, Lockwood Remediation Technologies (Lockwood), which will similarly be employed at the Gundalow Landing site. Following appropriate residence time for treatment, the water will be sampled consistent with RGP requirements prior to discharge into Little Bay. Lockwood estimates a holding time of approximately 20 minutes and a 90 to 95% performance efficiency for the carbon vessels.

Discharge from the treatment system shall be through an approximately 4 to 6-inch diameter hose that shall be positioned within the impact area associated with the Little Bay submarine cable installation as shown on the project environmental maps with the discharge located beyond the mudflats into the channel of Little Bay, approximately 450 to 500 feet from shore. The discharge point shall be placed in a fixed position within the water column, approximately 2 feet above the bottom in the channel of Little Bay. The discharge will be periodically monitored to ensure its positioning.

• Frink Farm - Groundwater generated during dewatering in the area of Frink Farm will be discharged onsite under a NPDES Remediation General Permit (Permit Pending). Groundwater will be pre-treated for sediment removal using holding tanks for settling larger suspended solids and discharging to dewatering bags for filtration of finer sediment. Water will be pumped into a second holding tank where it will be treated for PFCs using a carbon filter system. Refer to the Remediation General Permit Addendum dated June 27, 2019 for the Frink Farm property for treatment system information provided by the dewatering subcontractor, Lockwood. Following

appropriate residence time for treatment, the water will be sampled consistent with RGP requirements prior to discharge into Knights Brook. Lockwood estimates a holding time of approximately 20 minutes and a 90 to 95% performance efficiency for the carbon vessels. Additionally, confirmatory PFC samples shall be collected from the effluent and shall be no greater than concentrations of PFCs in Knights Brook just upstream of the discharge.

• Eversource has conducted geotechnical borings throughout the project area. Soil conditions throughout the Newington area typically consist of silts and clay with low transmissivity of groundwater in upper soil strata. Artesian conditions were not encountered at any boring location. In the event, however, that significantly higher than anticipated groundwater flow rates are observed resulting in artesian conditions, where groundwater maybe discharged to the ground surface, Eversource will immediately stop excavation activities, notify and consult NHDES, and implement appropriate mitigation measures. Containment measures such as backfilling or grouting the excavation and/or installing casing may be implemented. Eversource will consult with NHDES to ensure that measures to sufficiently increase dewatering capacity are implemented prior to recommencing with the excavation if an event of this nature were to occur.

Appendix C-3

Excavation and Stockpile Management Plan

EXCAVATION & STOCKPILE MANAGEMENT PLAN

Seacoast Reliability Project Eversource Energy Newington, New Hampshire

GZA has prepared this Excavation & Stockpile Management Plan (E&S Plan) to describe procedures for management of potentially contaminated soil generated during excavation and drilling activities associated with the proposed Seacoast Reliability Project (SRP), F107 transmission line through Newington, New Hampshire. The proposed transmission line construction consists of overhead structures with drilled or excavated foundations and underground alignment sections installed by jacking methods or direct burial. The project alignment passes north and east of the former Pease Air Force Base where historic releases of perflourinated compounds (PFCs) as well as petroleum and chlorinated solvents have occurred. This E&S Plan applies to construction of the SRP in Newington, east of Little Bay from Gundalow Landing to the Portsmouth Substation.

To assist with the on-site management and disposal of soils generated from the SRP construction in Newington, GZA has been retained by JCR Construction (overhead alignment contractor) and McCourt Construction Company (underground alignment contractor). GZA will be on-site to assist the Contractors with soil management activities during subsurface construction work related to disturbance of potentially contaminated soil and groundwater. Details related to construction dewatering activities are provided in a separate attachment, C-2 Construction Dewatering Plan.

Below is a general outline of the soil management approach and details of the soil stockpile pad to be utilized throughout soil management activities:

Soil Management Approach

- Unsaturated overburden soils and existing ground surface will be protected from contact with groundwater.
- Saturated soils will be removed using traditional excavation and drilling equipment and techniques and transferred into slurry-tight dump trucks or roll-off containers. Stockpiling of saturated soils at the excavation locations will be avoided to the extent practicable. If required, temporary stockpiling at the excavation/drilling locations will only be conducted under strict control of the stockpile area including but not limited to lining the ground surface with minimum 2 layers of polyethylene sheeting (minimum 6-mil) with berms to prevent run-off.
- Polyethylene sheeting (minimum 6-mil) will be placed on the ground surface during transfer of saturated soils from the drilling and excavation equipment into trucks and roll-offs.
- Slurry-tight trucks and roll-offs will be utilized to transport soils to the stockpile staging area.

EOTECHNICAL

ENVIRONMENTAL

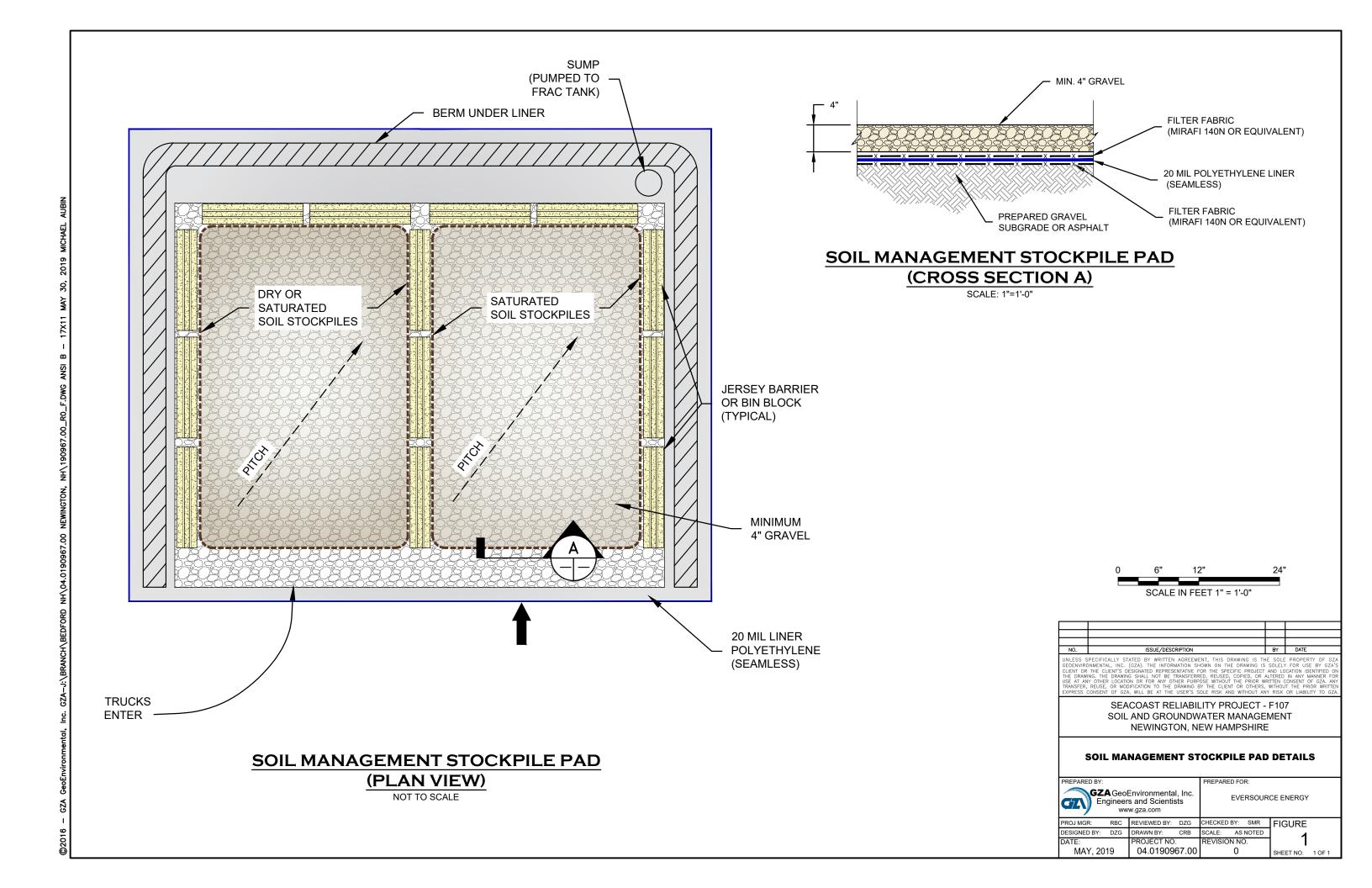
ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

5 Commerce Park North Suite 201 Bedford, NH 03110 T: 603.623.3600 F: 603.624.9463 www.gza.com

- An impervious soil stockpile pad will be utilized to stage soil for disposal characterization and dewatering
 prior to off-site transport. See Soil Stockpile Pad description below and attached Figure 1 Soil
 Management Stockpile Pad Details for specifications on the soil stockpile pad construction.
- Unsaturated soils not suitable for reuse at the soil excavation area, will also be stockpiled on the soil management pad for disposal characterization sampling and off-site disposal.


Soil Stockpile Pad Details

- The soil management stockpile pad will be underlain with a seamless impervious liner.
- Unpaved surfaces will be prepared by filling (if required), grading and compacting a gravel surface to support the liner. The surface will be graded with positive drainage to allow installation of a sump. Paved surfaces will be swept of debris prior to placement of the liner.
- Sediment controls will be installed within nearby drains and around the soil stockpile area as warranted by existing site conditions.
- A bottom layer of non-woven geotextile will be installed over the prepared gravel/asphalt surface to protect the liner from puncture.
- A 20-mil seamless HDPE polyethylene liner will be installed under the footprint of the soil stockpile pad over the non-woven geotextile.
- A second layer of non-woven geotextile will be installed over the polyethylene liner for puncture protection.
- Gravel berms will be installed under the liner along the sides and downgradient end of pad to allow for the collection of water.
- A minimum of 4-inches of well-draining gravel will be installed over the non-woven geotextile and liner to
 protect the liner from truck and equipment activity and to act as a visual warning layer during stockpile
 management and soil loadout.
- Soils placed within the staging area will be segregated based on source area, field screening results, and saturation. Concrete jersey barriers or bin blocks will be installed to create bays for soil segregation.
- A sump will be installed at the low side/corner of the liner and collected water will be transferred into fractanks for disposal characterization and off-site disposal at an approved facility.
- Stockpiled soils will be sampled and analyzed in accordance with licensed disposal facility acceptance criteria and will be transported off-site for disposal at an approved disposal facility.

Attachments: Soil Management Stockpile Pad Detail

Figure 1 - Soil Management Stockpile Pad Details

Appendix C-4

Supplemental Information - Soil and Groundwater Management at the Frink Farm Property

Supplemental Information Soil and Groundwater Management at the Frink Farm property

Introduction

The methods detailed are consistent with and supplement the *Updated Soil and Water Investigation and Management Plan Darius Frink Farm Newington, New Hampshire December 15, 2017* that was prepared by GEI Consultants and was agreed to by Eversource and the Rockingham County Conservation District (RCCD) in a Memorandum of Understanding on January 24, 2018. For reference, the **Project Area Plan (Figure 2)** from the above reference Soil and Groundwater Management Plan is attached. In addition, updated groundwater elevation measurements are attached in Table 1 and updated analytical results for PFCs are provided in Table 2, attached.

Groundwater Management

Based on GEI's groundwater testing results, and a recent round of groundwater sampling conducted by GZA, an environmental firm working with Eversource's construction contractors, concentrations of Perfluorinated compounds (PFCs) in groundwater collected from monitoring wells 101(MW), 102(MW) and 103(MW) are less than current Ambient Groundwater Quality Standards (AGQS) and significantly less than the PFC concentrations currently present in surface water in Knights Brook Tributary. As shown in Table 2, some PFC compounds detected in 102(MW) between 2016 and 2019 do slightly exceed the newly proposed AGQS for the PFC compounds Perfluorohexanesulfonic Acid (PFHxS) and Pefluorooctane Sulfonate (PFOS).

As discussed in Appendix C-2, Eversource has applied for an EPA National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) to discharge to the Knight's Brook Tributary. The NPDES RGP will require that dewatering effluent meet Surface Water Quality Standards defined by EPA prior to discharge to surface water. In addition, measures as requested by NHDES, which go above and beyond EPA requirements, will also be implemented as described in Appendix C-2.

As an alternative to discharge to Knights Brook Tributary, the contractor may choose to dewater to a temporary holding tank and to transport the groundwater to an offsite treatment facility.

Soil Management - Agricultural Field

Soil data collected from the agricultural field area between sample locations B101(MW) and B103(MW) show that there are no contaminants at levels of concern in soils and therefore, no potential to "spread" contamination in this area. Furthermore, in accordance with the *Gove Soil Management Plan for Easement* approved by the RCCD, to preserve agricultural integrity, it is Eversource's intent to:

- Side cast soils excavated from the trench in a windrow fashion
- Segregate top soil from the subsoil horizons
- Replace soils from whence they came in a manner that preserves the natural soil profile

Excess soil will not be reused in other locations on the Darius Frink Farm. As described in GEI's Soil and Water Management Plan, any excess soil will be transported offsite to an approved laydown area, sampled in a comprehensive manner for disposal characterization, and disposed of at a licensed disposal facility.

Additional information regarding soil stockpiling and management at the soil laydown area is provided in Appendix C-3.

Soil Management - Knight's Brook Tributary Area

Eversource has conservatively assumed that all sediment/soil located between Station 497+00 and 500+25 is potentially impacted by PFCs. These stations conservatively bound the Knights Brook Tributary and its associated wetlands complex.

- Station 497+00, to the west, is near the riser structure location and is beyond the typical flood zone of Knight's Brook Tributary.
- Station 500+25, to the east, by Boring 101(MW), is a location where soil concentrations were not detected for PFCs and groundwater concentrations were less than current and proposed AGQS standards for PFCs.

Soils in this area will be excavated in a similar fashion to the soils in the agricultural field to segregate soil horizons.

Native topsoil from this area will be used as backfill above the duct bank and thermal fill to replicate the upper soil profile in this area as required for proper wetlands restoration.

Excess soils from this area will remain temporarily stockpiled within this area until transported offsite for disposal or live loaded for offsite disposal. Stockpiles may need to be placed outside of the wetland boundary in uplands within the Station 497 +00 to 500+25 area.

All soil stockpiles will be promptly removed, not later than completion of the underground trench construction and before cable installation.

To prevent the accidental spread of soils to other areas of the property, signage will be posted to alert contractors that soils from the Station 497 + 00 to 500 + 25 area shall not be placed elsewhere on the property.

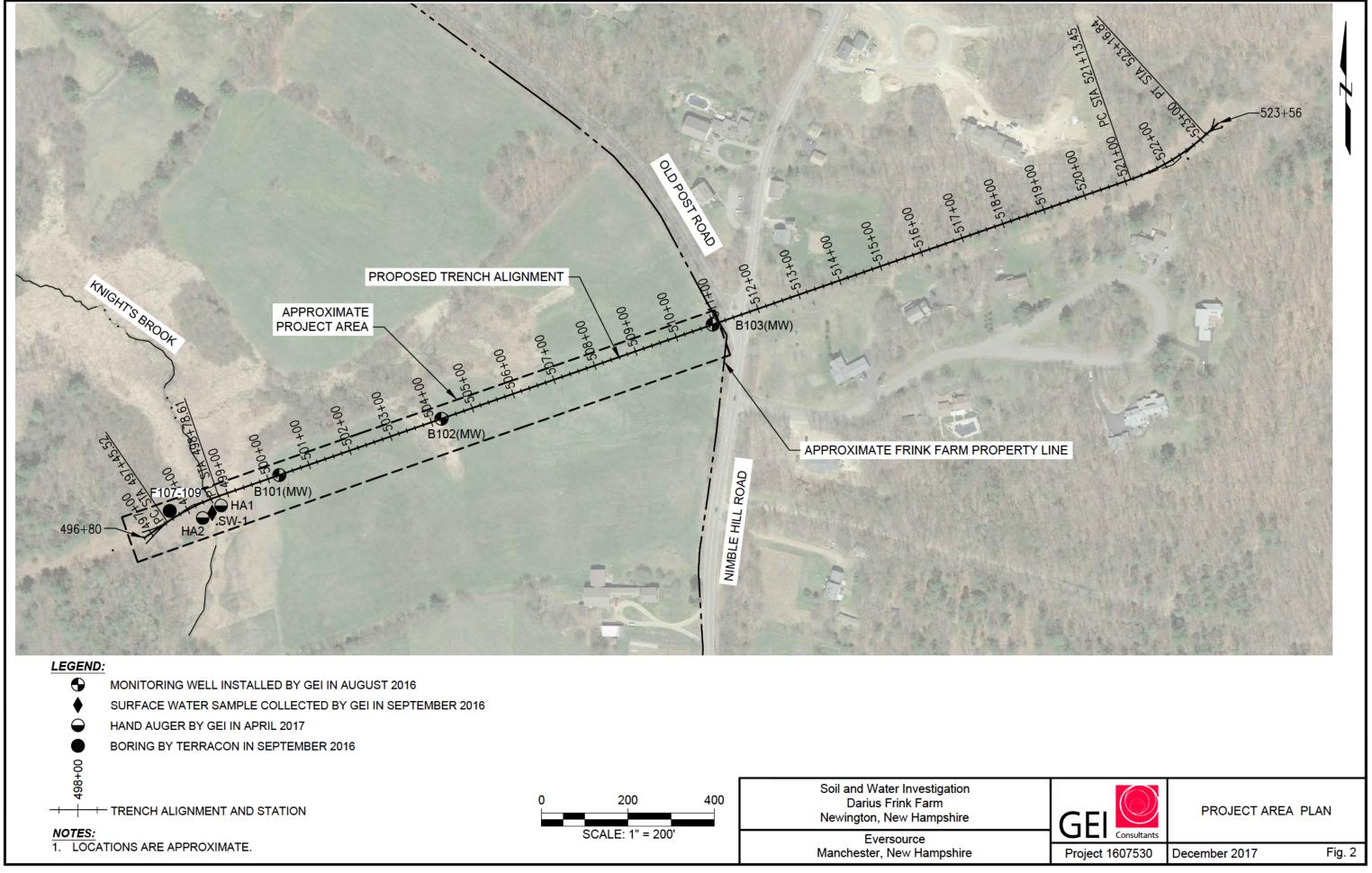


Table 1. Water Level Measurements
Darius Frink Farm
Eversource NH Seacoast Reliability Project
Newington, New Hampshire

	August 26, 2016		August 29, 2016		September 1, 2016		September 15, 2016		April 7,2017		June 2, 2017		May 23, 2019	
									Depth to		Depth to		Depth to	
		•		Depth to GW	•	•	•	•		Depth to GW	GW from	Depth to GW	GW from	Depth to GW
	from Top of	from Ground	from Top of	from Ground	from Top of	from Ground	from Top of	from Ground	Top of PVC	from Ground	Top of PVC	from Ground	Top of PVC	from Ground
Well ID	PVC (ft)	Surface (ft)	PVC (ft)	Surface (ft)	PVC (ft)	Surface (ft)	PVC (ft)	Surface (ft)	(ft)	Surface (ft)	(ft)	Surface (ft)	(ft)	Surface (ft)
MW101	ND	ND	7.91	4.79	7.79	4.67	8.04	4.92	3.41	0.29	3.95	0.83	3.42	0.30
MW102	7.29	4.39	6.67	3.77	6.79	3.89	7.18	4.28	3.61	0.71	4.02	1.12	3.58	0.68
MW103	NM	NM	ND	ND	ND	ND	ND	ND	At ground surface		2.11	2.31	NM	NM

Notes:

- 1. ft = feet
- 2. GW = groundwater
- 3. NM = Not measured
- 4. ND = Not detected
- 5. May 23, 2019 water level measurements taken by GZA GeoEnvironmental of Bedford, New Hampshire.

Table 2. Laboratory Testing Results - Groundwater and Surface Water

Darius Frink Farm

Eversource NH Seacoast Reliability Project

Newington, New Hampshire

	Sam	ple Location:	B101(MW)		MW-B101	B102(MW)		MW-B102	B103(MW)	SW1	08-SG03-SW			
		Company :	GEI	GEI	GZA	GEI	GEI	GZA	GEI	GEI	USAF	USAF		
Sample Date: Screen Interval:					09/01/2016 2-8'	06/02/2017 2-8'	05/14/2019 2-8'	09/01/2016 2-7'	06/02/2017 2-7'	05/14/2019 2-7'	06/02/2017 2-8'	09/01/2016 NA	03/12/2018 NA	4/18/20149 NA
Analyte	Method	Units	Current NH AGQS	2019 Proposed NH AGQS										
Perflourinated Compounds (PFCs)	537	ug/L												
Perfluorohexanesulfonic Acid (PFHxS)			NS	0.018	NT	NT	0.0098	NT	NT	0.022	NT	NT	1.6	1.2
Perfluorooctanoic Acid (PFOA)			0.07	0.012	< 0.00786	0.00248	<0.00174	0.0112	0.00711	0.00841	< 0.00185	0.842	0.79	0.64
Perfluorononanoic Acid (PFNA)			NS	0.011	NT	NT	<0.00174	NT	NT	<0.00178	NT	NT	0.0097	0.011
Perfluorooctane Sulfanate (PFOS)			0.07	0.015	< 0.00786	0.00305	0.00194	0.0161	0.0142	0.0251	0.00187	2.91	2.3	2.6
Total PFOA and PFOS			0.07	NS	ND	0.00553	0.00194	0.0273	0.02131	0.03351	0.00187	3.752	3.09	3.24

General Notes:

- 1. In general, analytes detected in at least one sample are reported here. For a complete list of analytes see the laboratory data sheets.
- 2. Only PFCs with applicable regulatory standards are reported here. For a complete list of analytes see the laboratory data sheets.
- 3. "<" = The analyte was not detected at a concentration above the specified laboratory reporting limit.
- 4. NH AGQS = New Hampshire Ambient Groundwater Quality Standards
- 5. NH AGQS for PFOA and PFOS from Emergency Rule 05-31-16 to Amend The New Hampshire Code of Administrative Rules Env-OR 603.03(b), eff 6-1-15
- 6. Values in bold exceed the current NH AGQS values.
- 7. Values in italics exceed the 2019 Proposed NH AGQS
- 8. NS = No NH AGQS Standard.
- 9 NT = Not Tested
- 10 ug/L = milligrams per liter.
- 11 umhos/cm = micromhos per centimeter.
- 12 GEI = GEI Consultants, Inc. of Woburn, MA
- 13 GZA = GZA GeoEnvironmental of Bedford, NH
- 14 USAF = United States Air Force